AIMC Topic: Severity of Illness Index

Clear Filters Showing 41 to 50 of 836 articles

Investigation of serum neuroserpin levels in pregnant women diagnosed with pre-eclampsia: a prospective case-control study.

BMC pregnancy and childbirth
OBJECTIVE: Neuroserpin, a serine protease inhibitor, is recognized for its anti-inflammatory and neuroprotective properties. Given the central role of inflammation and neurological involvement in the pathophysiology of preeclampsia, this study aimed ...

Deep learning-based evaluation of the severity of mitral regurgitation in canine myxomatous mitral valve disease patients using digital stethoscope recordings.

BMC veterinary research
BACKGROUND: Myxomatous mitral valve disease (MMVD) represents the most prevalent cardiac disorder in dogs, frequently resulting in mitral regurgitation (MR) and congestive heart failure. Although echocardiography is the gold standard for diagnosis, i...

Predictive survival modelings for HIV-related cryptococcosis: comparing machine learning approaches.

Frontiers in cellular and infection microbiology
INTRODUCTION: HIV-associated cryptococcosis is marked by unpredictable disease trajectories and persistently high mortality rates worldwide. Although improved risk stratification and tailored clinical management are urgently needed to enhance patient...

Development and validation of a novel chronic pancreatitis pathological grade based on artificial intelligence.

Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]
BACKGROUND: Effective chronic pancreatitis (CP) treatment requires accurate severity evaluation, but no histopathology grading system exists. This study aimed to develop and validate a novel CP pathological grade (Histopathology-derived CPpG) using q...

Predictive models of severe disease in patients with COVID-19 pneumonia at an early stage on CT images using topological properties.

Radiological physics and technology
Prediction of severe disease (SVD) in patients with coronavirus disease (COVID-19) pneumonia at an early stage could allow for more appropriate triage and improve patient prognosis. Moreover, the visualization of the topological properties of COVID-1...

ProtoASNet: Comprehensive evaluation and enhanced performance with uncertainty estimation for aortic stenosis classification in echocardiography.

Medical image analysis
Aortic stenosis (AS) is a prevalent heart valve disease that requires accurate and timely diagnosis for effective treatment. Current methods for automated AS severity classification rely on black-box deep learning techniques, which suffer from a low ...

Identification and validation of a novel machine learning model for predicting severe pelvic endometriosis: A retrospective study.

Scientific reports
This study aimed to explore potential risk factors for severe endometriosis and to develop a model to predict the risk of severe endometriosis. A total of 308 patients with endometriosis were analyzed. Least absolute shrinkage and selection operator ...

AI-assisted identification of disability patterns within identical EDSS grades.

Multiple sclerosis (Houndmills, Basingstoke, England)
BACKGROUND: The Neurostatus-Expanded Disability Status Scale (EDSS) is the most frequently used measure of disability in multiple sclerosis (MS) trials. However, EDSS scores ⩾4.5 are mainly based on ambulation and may fail to capture relevant disabil...

A machine learning-based severity stratification tool for high altitude pulmonary edema.

BMC medical informatics and decision making
This study aimed to identify key predictors for the severity of High Altitude Pulmonary Edema (HAPE) to assist clinicians in promptly recognizing severely affected patients in the emergency department, thereby reducing associated mortality rates. Mul...