BACKGROUND: Gastric cancer patients are prone to lower extremity deep vein thrombosis (DVT) after surgery, which is an important cause of death in postoperative patients. Therefore, it is particularly important to find a suitable way to predict the r...
Gastric cancer (GC) is one of the most common tumors; one of the reasons for its poor prognosis is that GC cells can resist normal cell death process and therefore develop distant metastasis. Cuproptosis is a novel type of cell death and a limited nu...
Journal of cancer research and clinical oncology
Feb 3, 2025
OBJECTIVE: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to...
Endoscopy is widely used to diagnose gastric cancer and has a high diagnostic performance, but it must be performed by a physician, which limits the number of people who can be diagnosed. In contrast, gastric X-rays can be taken by radiographers, thu...
International journal of surgery (London, England)
Feb 1, 2025
BACKGROUND: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to d...
Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microR...
BACKGROUND: This study aimed to develop a dynamic survival prediction model utilizing conditional survival (CS) analysis and machine learning techniques for gastric neuroendocrine carcinomas (GNECs).
RATIONALE AND OBJECTIVES: The expression of human epidermal growth factor receptor 2 (HER2) in gastric cancer is closely associated with its treatment outcomes and prognosis. This study aims to develop and validate a HER2 prediction model based on co...
OBJECTIVE: To assess the effectiveness of a machine learning framework and nomogram in predicting progression-free survival (PFS) post-radical gastrectomy in patients with dMMR.
Accurate and fast histological diagnosis of cancers is crucial for successful treatment. The deep learning-based approaches have assisted pathologists in efficient cancer diagnosis. The remodeled microenvironment and field cancerization may enable th...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.