AIMC Topic: Structure-Activity Relationship

Clear Filters Showing 81 to 90 of 240 articles

Structure-based protein function prediction using graph convolutional networks.

Nature communications
The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, we introduce DeepFRI, a Graph Convolutional Network for predicting pro...

Classification and Design of HIV-1 Integrase Inhibitors Based on Machine Learning.

Computational and mathematical methods in medicine
A key enzyme in human immunodeficiency virus type 1 (HIV-1) life cycle, integrase (IN) aids the integration of viral DNA into the host DNA, which has become an ideal target for the development of anti-HIV drugs. A total of 1785 potential HIV-1 IN inh...

Epigenetic Target Fishing with Accurate Machine Learning Models.

Journal of medicinal chemistry
Epigenetic targets are of significant importance in drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represe...

Prediction of activity cliffs on the basis of images using convolutional neural networks.

Journal of computer-aided molecular design
An activity cliff (AC) is formed by a pair of structurally similar compounds with a large difference in potency. Accordingly, ACs reveal structure-activity relationship (SAR) discontinuity and provide SAR information for compound optimization. Herein...

Artificial Intelligence Applied to the Rapid Identification of New Antimalarial Candidates with Dual-Stage Activity.

ChemMedChem
Increasing reports of multidrug-resistant malaria parasites urge the discovery of new effective drugs with different chemical scaffolds. Protein kinases play a key role in many cellular processes such as signal transduction and cell division, making ...

Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning.

Journal of the American Chemical Society
Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein-protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-li...