IEEE transactions on neural networks and learning systems
May 2, 2025
Recent deep learning models can efficiently combine inputs from different modalities (e.g., images and text) and learn to align their latent representations or to translate signals from one domain to another (as in image captioning or text-to-image g...
BMC medical informatics and decision making
May 1, 2025
BACKGROUND AND OBJECTIVE: This study has two main objectives. First, to evaluate a feature selection methodology based on SEQENS, an algorithm for identifying relevant variables. Second, to validate machine learning models that predict the risk of co...
Astrocytes regulate synaptic activity across large brain territories via their complex, interconnected morphology. Emerging evidence supports the involvement of astrocytes in shaping relapse to opioid use through morphological rearrangements in the n...
Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-s...
International journal of neural systems
Apr 28, 2025
Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing ...
Identifying predictors of treatment response to repetitive transcranial magnetic stimulation (rTMS) remain elusive in treatment-resistant depression (TRD). Leveraging electronic medical records (EMR), this retrospective cohort study applied supervise...
Computer methods and programs in biomedicine
Apr 24, 2025
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has become a significant tool for addressing complex issuess in the field of biology. In the context of scRNA-seq analysis, it is imperative to accurately determine the type of each cell. However, co...
Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subj...
Surgical instrument segmentation is recognised as a key enabler in providing advanced surgical assistance and improving computer-assisted interventions. In this work, we propose SegMatch, a semi-supervised learning method to reduce the need for expen...
In deep learning, Semi-Supervised Learning is a highly effective technique to enhances neural network training by leveraging both labeled and unlabeled data. This process involves using a trained model to generate pseudo labels to the unlabeled sampl...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.