AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Support Vector Machine

Showing 131 to 140 of 4555 articles

Clear Filters

Machine Learning-Based Identification of Novel Exosome-Derived Metabolic Biomarkers for the Diagnosis of Systemic Lupus Erythematosus and Differentiation of Renal Involvement.

Current medical science
OBJECTIVE: This study aims to investigate the exosome-derived metabolomicsĀ profiles in systemic lupus erythematosus (SLE), identify differential metabolites, and analyze their potential as diagnostic markers for SLE and lupus nephritis (LN).

Application of Machine Learning for FOS/TAC Soft Sensing in Bio-Electrochemical Anaerobic Digestion.

Molecules (Basel, Switzerland)
This study explores the application of various machine learning (ML) models for the real-time prediction of the FOS/TAC ratio in microbial electrolysis cell anaerobic digestion (MEC-AD) systems using data collected during a 160-day trial treating bre...

Enhancing e-waste management: a novel light gradient AdaBoost support vector classification approach.

Environmental monitoring and assessment
The global consequences of electronic waste significantly affect the environment and human health. Accurate classification is essential for effective recycling and management to mitigate serious environmental harm caused by improper disposal. However...

Machine Learning-Based Prediction of Postoperative Pneumonia Among Super-Aged Patients With Hip Fracture.

Clinical interventions in aging
BACKGROUND: Hip fractures have become a significant health concern, particularly among super-aged patients, who were at a high risk of postoperative pneumonia due to their frailty and the presence of multiple comorbidities. This study aims to establi...

Prediction and validation of anoikis-related genes in neuropathic pain using machine learning.

PloS one
BACKGROUND: Neuropathic pain (NP) can be induced by a variety of clinical conditions, such as spinal cord injury, lumbar disc herniation (LDH), lumbar spinal stenosis, diabetes, herpes zoster, and spinal cord tumors, and inflammatory stimuli. The pat...

A labeled medical records corpus for the timely detection of rare diseases using machine learning approaches.

Scientific reports
Rare diseases (RDs) are a group of pathologies that individually affect less than 1 in 2000 people but collectively impact around 7% of the world's population. Most of them affect children, are chronic and progressive, and have no specific treatment....

Predicting 90-day risk of urinary tract infections following urostomy in bladder cancer patients using machine learning and explainability.

Scientific reports
This research aims to design and validate a machine learning model to predict the probability of urinary tract infections within 90 days post-urostomy in bladder cancer patients. Clinical and follow-up information from 317 patients who had urostomy p...

Deep transfer learning radiomics for distinguishing sinonasal malignancies: a preliminary MRI study.

Future oncology (London, England)
PURPOSE: This study aimed to assess the diagnostic accuracy of combining MRI hand-crafted (HC) radiomics features with deep transfer learning (DTL) in identifying sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC), and non-Hodgki...

Atrial fibrillation risk model based on LASSO and SVM algorithms and immune infiltration of key mitochondrial energy metabolism genes.

Scientific reports
Atrial fibrillation (AF) is a predominant cardiac arrhythmia with unclear etiology. This study used bioinformatics and machine learning to explore the relationship between mitochondrial energy metabolism-related genes (MEMRGs) and immune infiltration...

Cognitive performance classification of older patients using machine learning and electronic medical records.

Scientific reports
Dementia rates are projected to increase significantly by 2050, posing considerable challenges for healthcare systems worldwide. Developing efficient diagnostic tools is critical, and machine learning (ML) algorithms have shown potential for improvin...