AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Support Vector Machine

Showing 201 to 210 of 4557 articles

Clear Filters

Nonlinear feature selection for support vector quantile regression.

Neural networks : the official journal of the International Neural Network Society
This paper discusses the nuanced domain of nonlinear feature selection in heterogeneous systems. To address this challenge, we present a sparsity-driven methodology, namely nonlinear feature selection for support vector quantile regression (NFS-SVQR)...

LMSST-GCN: Longitudinal MRI sub-structural texture guided graph convolution network for improved progression prediction of knee osteoarthritis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline ...

Combining a Standardized Growth Class Assessment, UAV Sensor Data, GIS Processing, and Machine Learning Classification to Derive a Correlation with the Vigour and Canopy Volume of Grapevines.

Sensors (Basel, Switzerland)
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standa...

Integrating machine learning and structure-based approaches for repurposing potent tyrosine protein kinase Src inhibitors to treat inflammatory disorders.

Scientific reports
Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivit...

Identification of biomarkers for knee osteoarthritis through clinical data and machine learning models.

Scientific reports
Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning ...

Machine learning in public health informatics: Evidence that complex sampling structures may not be needed for prediction models with imbalanced outcomes.

Annals of epidemiology
PURPOSE: The objective of this study is to investigate the predictive ability of machine learning models for imbalanced outcomes from national survey data without the use of sampling weights.

A hybrid unsupervised machine learning model with spectral clustering and semi-supervised support vector machine for credit risk assessment.

PloS one
In credit risk assessment, unsupervised classification techniques can be introduced to reduce human resource expenses and expedite decision-making. Despite the efficacy of unsupervised learning methods in handling unlabeled datasets, their performanc...

Exploration of designing an automatic classifier for questions containing code snippets-A case study of Oracle SQL certification exam questions.

PloS one
This study uses the Oracle SQL certification exam questions to explore the design of automatic classifiers for exam questions containing code snippets. SQL's question classification assigns a class label in the exam topics to a question. With this cl...

Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques.

PloS one
Heart disease remains a leading cause of mortality and morbidity worldwide, necessitating the development of accurate and reliable predictive models to facilitate early detection and intervention. While state of the art work has focused on various ma...

Utilizing natural language processing to identify pediatric patients experiencing status epilepticus.

Seizure
PURPOSE: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.