AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Support Vector Machine

Showing 261 to 270 of 4557 articles

Clear Filters

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

Sensors (Basel, Switzerland)
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early ...

Automated feature selection for early keratoconus screening optimization.

Biomedical physics & engineering express
In this paper, an automated feature selection (FS) method is presented to optimize machine learning (ML) models' performances, enhancing early keratoconus screening. A total of 448 parameters were analyzed from a dataset comprising 3162 observations ...

Improving prediction of solar radiation using Cheetah Optimizer and Random Forest.

PloS one
In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML...

Photonic platform coupled with machine learning algorithms to detect pyrolysis products of crack cocaine in saliva: A proof-of-concept animal study.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The non-invasive detection of crack/cocaine and other bioactive compounds from its pyrolysis in saliva can provide an alternative for drug analysis in forensic toxicology. Therefore, a highly sensitive, fast, reagent-free, and sustainable approach wi...

Predicting cyclins based on key features and machine learning methods.

Methods (San Diego, Calif.)
Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological f...

Unravelling intubation challenges: a machine learning approach incorporating multiple predictive parameters.

BMC anesthesiology
BACKGROUND: To protect patients during anesthesia, difficult airway management is a serious issue that needs to be carefully planned for and carried out. Machine learning prediction tools have recently become increasingly common in medicine, frequent...

An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.

BMC medical informatics and decision making
BACKGROUND: Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explain...

Machine learning models predict the progression of long-term renal insufficiency in patients with renal cancer after radical nephrectomy.

BMC nephrology
BACKGROUND: Chronic Kidney Disease (CKD) is a common severe complication after radical nephrectomy in patients with renal cancer. The timely and accurate prediction of the long-term progression of renal function post-surgery is crucial for early inte...

Auxiliary identification of depression patients using interpretable machine learning models based on heart rate variability: a retrospective study.

BMC psychiatry
OBJECTIVE: Depression has emerged as a global public health concern with high incidence and disability rates, which are timely imperative to identify and intervene in clinical practice. The objective of this study was to explore the association betwe...