AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 221 to 230 of 4778 articles

LUCF-Net: Lightweight U-Shaped Cascade Fusion Network for Medical Image Segmentation.

IEEE journal of biomedical and health informatics
The performance of modern U-shaped neural networks for medical image segmentation has been significantly enhanced by incorporating Transformer layers. Although Transformer architectures are powerful at extracting global information, its ability to ca...

OMS-CNN: Optimized Multi-Scale CNN for Lung Nodule Detection Based on Faster R-CNN.

IEEE journal of biomedical and health informatics
The global increase in lung cancer cases, often marked by pulmonary nodules, underscores the critical importance of timely detection to mitigate cancer progression and reduce morbidity and mortality. The Faster R-CNN approach is a two-stage, high-pre...

CDAF-Net: A Contextual Contrast Detail Attention Feature Fusion Network for Low-Dose CT Denoising.

IEEE journal of biomedical and health informatics
Low-dose computed tomography (LDCT) is a specialized CT scan with a lower radiation dose than normal-dose CT. However, the reduced radiation dose can introduce noise and artifacts, affecting diagnostic accuracy. To enhance the LDCT image quality, we ...

A unified approach to medical image segmentation by leveraging mixed supervision and self and transfer learning (MIST).

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Medical image segmentation is important for quantitative disease diagnosis and treatment but relies on accurate pixel-wise labels, which are costly, time-consuming, and require domain expertise. This work introduces MIST (MIxed supervision, Self, and...

Artificial intelligence-based deep learning algorithms for ground-glass opacity nodule detection: A review.

Narra J
Ground-glass opacities (GGOs) are hazy opacities on chest computed tomography (CT) scans that can indicate various lung diseases, including early COVID-19, pneumonia, and lung cancer. Artificial intelligence (AI) is a promising tool for analyzing med...

Development and validation of automated three-dimensional convolutional neural network model for acute appendicitis diagnosis.

Scientific reports
Rapid, accurate preoperative imaging diagnostics of appendicitis are critical in surgical decisions of emergency care. This study developed a fully automated diagnostic framework using a 3D convolutional neural network (CNN) to identify appendicitis ...

Comparing Artificial Intelligence and Traditional Regression Models in Lung Cancer Risk Prediction Using A Systematic Review and Meta-Analysis.

Journal of the American College of Radiology : JACR
PURPOSE: Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (...

Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images.

Cell reports. Medicine
Large language models have shown efficacy across multiple medical tasks. However, their value in the assessment of longitudinal follow-up computed tomography (CT) images of patients with lung nodules is unclear. In this study, we evaluate the ability...

CT Differentiation and Prognostic Modeling in COVID-19 and Influenza A Pneumonia.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to compare CT features of COVID-19 and Influenza A pneumonia, develop a diagnostic differential model, and explore a prognostic model for lesion resolution.

Prediction of Lymph Node Metastasis in Lung Cancer Using Deep Learning of Endobronchial Ultrasound Images With Size on CT and PET-CT Findings.

Respirology (Carlton, Vic.)
BACKGROUND AND OBJECTIVE: Echo features of lymph nodes (LNs) influence target selection during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). This study evaluates deep learning's diagnostic capabilities on EBUS images f...