AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 451 to 460 of 4795 articles

Prior-FOVNet: A Multimodal Deep Learning Framework for Megavoltage Computed Tomography Truncation Artifact Correction and Field-of-View Extension.

Sensors (Basel, Switzerland)
Megavoltage computed tomography (MVCT) plays a crucial role in patient positioning and dose reconstruction during tomotherapy. However, due to the limited scan field of view (sFOV), the entire cross-section of certain patients may not be fully covere...

Predicting lymph node metastasis in thyroid cancer: systematic review and meta-analysis on the CT/MRI-based radiomics and deep learning models.

Clinical imaging
BACKGROUND: Thyroid cancer, a common endocrine malignancy, has seen increasing incidence, making lymph node metastasis (LNM) a critical factor for recurrence and survival. Radiomics and deep learning (DL) advancements offer the potential for improved...

Mask R-CNN assisted diagnosis of spinal tuberculosis.

Journal of X-ray science and technology
The prevalence of spinal tuberculosis (ST) is particularly high in underdeveloped regions with inadequate medical conditions. This not only leads to misdiagnosis and delays in treatment progress but also contributes to the continued transmission of t...

Prognostic value of a composite physiologic index developed by adding bronchial and hyperlucent volumes quantified via artificial intelligence technology.

Respiratory research
BACKGROUND: The composite physiologic index (CPI) was developed to estimate the extent of interstitial lung disease (ILD) in idiopathic pulmonary fibrosis (IPF) patients based on pulmonary function tests (PFTs). The CALIPER-revised version of the CPI...

Fusion-driven semi-supervised learning-based lung nodules classification with dual-discriminator and dual-generator generative adversarial network.

BMC medical informatics and decision making
BACKGROUND: The detection and classification of lung nodules are crucial in medical imaging, as they significantly impact patient outcomes related to lung cancer diagnosis and treatment. However, existing models often suffer from mode collapse and po...

The role of artificial intelligence in the diagnosis, imaging, and treatment of thoracic empyema.

Current opinion in pulmonary medicine
PURPOSE OF REVIEW: The management of thoracic empyema is often complicated by diagnostic delays, recurrence, treatment failures and infections with antibiotic resistant bacteria. The emergence of artificial intelligence (AI) in healthcare, particular...

Deep learning model for automated detection of fresh and old vertebral fractures on thoracolumbar CT.

European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
PURPOSE: To develop a deep learning system for automatic segmentation of compression fracture vertebral bodies on thoracolumbar CT and differentiate between fresh and old fractures.