AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 471 to 480 of 4963 articles

Impact of Deep Learning 3D CT Super-Resolution on AI-Based Pulmonary Nodule Characterization.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVES: Correct pulmonary nodule volumetry and categorization is paramount for accurate diagnosis in lung cancer screening programs. CT scanners with slice thicknesses of multiple millimetres are still common worldwide, and slice thick...

Deep learning-based algorithm for classifying high-resolution computed tomography features in coal workers' pneumoconiosis.

Biomedical engineering online
BACKGROUND: Coal workers' pneumoconiosis is a chronic occupational lung disease with considerable pulmonary complications, including irreversible lung diseases that are too complex to accurately identify via chest X-rays. The classification of clinic...

Artificial intelligence-assisted platform performs high detection ability of hepatocellular carcinoma in CT images: an external clinical validation study.

BMC cancer
BACKGROUND: Accurate detection of hepatocellular carcinoma (HCC) in multiphasic contrast CT is essential for effective treatment and surgical planning. However, the variety of CT images, the misdiagnosis and missed diagnosis, and the inconsistent dia...

Enhancing Diagnostic Accuracy of Lung Nodules in Chest Computed Tomography Using Artificial Intelligence: Retrospective Analysis.

Journal of medical Internet research
BACKGROUND: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accura...

Classification of CT scan and X-ray dataset based on deep learning and particle swarm optimization.

PloS one
In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, tr...

Non-invasive Assessment of Human Epidermal Growth Factor Receptor 2 Expression in Gastric Cancer Based on Deep Learning: A Computed Tomography-based Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The expression of human epidermal growth factor receptor 2 (HER2) in gastric cancer is closely associated with its treatment outcomes and prognosis. This study aims to develop and validate a HER2 prediction model based on co...

Artificial Intelligence in Pancreatic Imaging: A Systematic Review.

United European gastroenterology journal
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to...

A deep learning pipeline for systematic and accurate vertebral fracture reporting in computed tomography.

Clinical radiology
AIM: Spine fractures are a frequent and relevant diagnosis, but systematic documentation is time-consuming and sometimes overlooked. A deep learning pipeline for opportunistic fracture detection in computed tomography (CT) spine images of varying fie...

NAVT-net neuron attention visual taylor network for lung cancer detection using CT images.

Computational biology and chemistry
Lung Cancer is regarded as a common fatal disease affecting humans throughout the entire world. Early diagnosis is vital to save the patient's life and Computed Tomography (CT) scans are referred to as the major imaging modes but, the manual examinat...

Development of a Clinically Applicable Deep Learning System Based on Sparse Training Data to Accurately Detect Acute Intracranial Hemorrhage from Non-enhanced Head Computed Tomography.

Neurologia medico-chirurgica
Non-enhanced head computed tomography is widely used for patients presenting with head trauma or stroke, given acute intracranial hemorrhage significantly influences clinical decision-making. This study aimed to develop a deep learning algorithm, ref...