INTRODUCTION: Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this ex...
European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
Nov 15, 2024
INTRODUCTION: No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learnin...
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...
Computer methods and programs in biomedicine
Nov 14, 2024
BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, du...
BACKGROUND: Accurate prognostication of overall survival (OS) for non-small cell lung cancer (NSCLC) patients receiving definitive radiotherapy (RT) is crucial for developing personalized treatment strategies. This study aims to construct an interpre...
Journal of gastroenterology and hepatology
Nov 14, 2024
BACKGROUND AND AIM: Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver les...
Journal of applied clinical medical physics
Nov 14, 2024
OBJECTIVE: We investigated the feasibility of deep learning-based ultra-low dose kV-fan-beam computed tomography (kV-FBCT) image enhancement algorithm for clinical application in abdominal and pelvic tumor radiotherapy.
OBJECTIVES: By developing the deep learning model SPE-YOLO, the detection of small pulmonary embolism has been improved, leading to more accurate identification of this condition. This advancement aims to better serve medical diagnosis and treatment.
Oral surgery, oral medicine, oral pathology and oral radiology
Nov 12, 2024
OBJECTIVE: This study aimed to develop 3 models based on computed tomography (CT) images of patients with craniofacial fibrous dysplasia (CFD): a radiomics model (Model Rad), a deep learning (DL) model (Model DL), and a hybrid radiomics and DL model ...
PURPOSE: Pneumothorax (PTX) is a common clinical urgency, its diagnosis is usually performed on chest radiography (CXR), and it presents a setting where artificial intelligence (AI) methods could find terrain in aiding radiologists in facing increasi...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.