AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 671 to 680 of 4963 articles

Validation of SynthSeg segmentation performance on CT using paired MRI from radiotherapy patients.

NeuroImage
INTRODUCTION: Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this ex...

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
INTRODUCTION: No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learnin...

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...

BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, du...

Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters.

La Radiologia medica
BACKGROUND: Accurate prognostication of overall survival (OS) for non-small cell lung cancer (NSCLC) patients receiving definitive radiotherapy (RT) is crucial for developing personalized treatment strategies. This study aims to construct an interpre...

Automatic localization and deep convolutional generative adversarial network-based classification of focal liver lesions in computed tomography images: A preliminary study.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver les...

SPE-YOLO: A deep learning model focusing on small pulmonary embolism detection.

Computers in biology and medicine
OBJECTIVES: By developing the deep learning model SPE-YOLO, the detection of small pulmonary embolism has been improved, leading to more accurate identification of this condition. This advancement aims to better serve medical diagnosis and treatment.

Predicting craniofacial fibrous dysplasia growth status: an exploratory study of a hybrid radiomics and deep learning model based on computed tomography images.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: This study aimed to develop 3 models based on computed tomography (CT) images of patients with craniofacial fibrous dysplasia (CFD): a radiomics model (Model Rad), a deep learning (DL) model (Model DL), and a hybrid radiomics and DL model ...

Diagnostic performance of an artificial intelligence model for the detection of pneumothorax at chest X-ray.

Clinical imaging
PURPOSE: Pneumothorax (PTX) is a common clinical urgency, its diagnosis is usually performed on chest radiography (CXR), and it presents a setting where artificial intelligence (AI) methods could find terrain in aiding radiologists in facing increasi...