AIMC Topic: Vascular Calcification

Clear Filters Showing 41 to 50 of 79 articles

Artificial intelligence in cardiac radiology.

La Radiologia medica
Artificial intelligence (AI) is entering the clinical arena, and in the early stage, its implementation will be focused on the automatization tasks, improving diagnostic accuracy and reducing reading time. Many studies investigate the potential role ...

Functional cardiac CT-Going beyond Anatomical Evaluation of Coronary Artery Disease with Cine CT, CT-FFR, CT Perfusion and Machine Learning.

The British journal of radiology
The aim of this review is to provide an overview of different functional cardiac CT techniques which can be used to supplement assessment of the coronary arteries to establish the significance of coronary artery stenoses. We focus on cine-CT, CT-FFR,...

The correlation of deep learning-based CAD-RADS evaluated by coronary computed tomography angiography with breast arterial calcification on mammography.

Scientific reports
This study sought to evaluate the association of breast arterial calcification (BAC) on breast screening mammography with the Coronary Artery Disease-Reporting and Data System (CAD-RADS) based on Deep Learning-coronary computed tomography angiography...

Ischemia and outcome prediction by cardiac CT based machine learning.

The international journal of cardiovascular imaging
Cardiac CT using non-enhanced coronary artery calcium scoring (CACS) and coronary CT angiography (cCTA) has been proven to provide excellent evaluation of coronary artery disease (CAD) combining anatomical and morphological assessment of CAD for card...

Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network.

Urolithiasis
The objectives were to develop and validate a Convolutional Neural Network (CNN) using local features for differentiating distal ureteral stones from pelvic phleboliths, compare the CNN method with a semi-quantitative method and with radiologists' as...

Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects.

Circulation. Cardiovascular imaging
BACKGROUND: Epicardial adipose tissue (EAT) volume (cm) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenua...

Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols.

Radiology
Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method ...

Development and application of artificial intelligence in cardiac imaging.

The British journal of radiology
In this review, we describe the technical aspects of artificial intelligence (AI) in cardiac imaging, starting with radiomics, basic algorithms of deep learning and application tasks of algorithms, until recently the availability of the public databa...