OBJECTIVES: The authors applied unsupervised machine-learning techniques for integrating echocardiographic features of left ventricular (LV) structure and function into a patient similarity network that predicted major adverse cardiac event(s) (MACE)...
Circulation. Arrhythmia and electrophysiology
Mar 18, 2020
BACKGROUND: Transition zones between healthy myocardium and scar form a spatially complex substrate that may give rise to reentrant ventricular arrhythmias (VAs). We sought to assess the utility of a novel machine learning approach for quantifying 3-...
Biomedical physics & engineering express
Feb 18, 2020
BACKGROUND: Magnetic resonance cine imaging is the accepted standard for cardiac functional assessment. Left ventricular (LV) segmentation plays a key role in volumetric functional quantification of the heart. Conventional manual analysis is time-con...
Circulation. Arrhythmia and electrophysiology
Feb 16, 2020
BACKGROUND: Deep learning algorithms derived in homogeneous populations may be poorly generalizable and have the potential to reflect, perpetuate, and even exacerbate racial/ethnic disparities in health and health care. In this study, we aimed to (1)...
BACKGROUND: Although analysis of cardiac magnetic resonance (CMR) images provides accurate and reproducible measurements of left ventricular (LV) volumes, these measurements are usually not performed throughout the cardiac cycle because of lack of to...
Scandinavian cardiovascular journal : SCJ
Oct 18, 2019
In heart failure, invasive angiography is often employed to differentiate ischaemic from non-ischaemic cardiomyopathy. We aim to examine the predictive value of echocardiographic strain features alone and in combination with other features to differ...
BACKGROUND: Echocardiographic quantification of left ventricular (LV) ejection fraction (EF) relies on either manual or automated identification of endocardial boundaries followed by model-based calculation of end-systolic and end-diastolic LV volume...