AIMC Topic: Young Adult

Clear Filters Showing 101 to 110 of 4628 articles

Behavioural and EEG correlates of forward and backward priming-An exploratory study.

PloS one
During affective priming, perception of an emotional "prime stimulus" influences the reaction time to the subsequent emotional "target stimulus". If prime and target have the same valence (congruent trials), reactions to the target are faster than if...

Continuous Joint Kinematics Prediction Using GAT-LSTM Framework Based on Muscle Synergy and Sparse sEMG.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
sEMG signals hold significant potential for motion prediction, with promising applications in areas such as rehabilitation, sports training, and human-computer interaction. However, achieving robust prediction accuracy remains a critical challenge, a...

Single-microphone deep envelope separation based auditory attention decoding for competing speech and music.

Journal of neural engineering
In this study, we introduce an end-to-end single microphone deep learning system for source separation and auditory attention decoding (AAD) in a competing speech and music setup. Deep source separation is applied directly on the envelope of the obse...

Unsupervised Domain Adaptation With Synchronized Self-Training for Cross- Domain Motor Imagery Recognition.

IEEE journal of biomedical and health informatics
Robust decoding performance is essential for the practical deployment of brain-computer interface (BCI) systems. Existing EEG decoding models often rely on large amounts of annotated data collected through specific experimental setups, which fail to ...

AgeML: Age Modeling With Machine Learning.

IEEE journal of biomedical and health informatics
An approach to age modeling involves the supervised prediction of age using machine learning from subject features. The derived age metrics are used to study the relationship between healthy and pathological aging in multiple body systems, as well as...

MHFNet: A Multimodal Hybrid-Embedding Fusion Network for Automatic Sleep Staging.

IEEE journal of biomedical and health informatics
Scoring sleep stages is essential for evaluating the status of sleep continuity and comprehending its structure. Despite previous attempts, automating sleep scoring remains challenging. First, most existing works did not fuse local and global tempora...

Cognitive Load Prediction From Multimodal Physiological Signals Using Multiview Learning.

IEEE journal of biomedical and health informatics
Predicting cognitive load is a crucial issue in the emerging field of human-computer interaction and holds significant practical value, particularly in flight scenarios. Although previous studies have realized efficient cognitive load classification,...

Development and Validation of a Novel Prediction Model for Hearing Loss From Cisplatin Chemotherapy.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology
PURPOSE: Cisplatin treats many common tumors but causes permanent and debilitating hearing loss (HL). The objective of this study was to develop and externally validate a predictive model of HL in cisplatin-treated children and adolescent cancer surv...

Effective Autism Classification Through Grasping Kinematics.

Autism research : official journal of the International Society for Autism Research
Autism is a complex neurodevelopmental condition, where motor abnormalities play a central role alongside social and communication difficulties. These motor symptoms often manifest in early childhood, making them critical targets for early diagnosis ...

Adopting machine learning to predict nomogram for small incision lenticule extraction (SMILE).

International ophthalmology
PURPOSE: To predict nomogram for small incision lenticule extraction (SMILE) using machine learning technology and preoperative clinical data.