RATIONALE AND OBJECTIVES: This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM...
RATIONALE AND OBJECTIVES: Peritoneal recurrence is the predominant pattern of recurrence in advanced ovarian cancer (AOC) and portends a dismal prognosis. Accurate prediction of peritoneal recurrence and disease-free survival (DFS) is crucial to iden...
RATIONALE AND OBJECTIVES: To develop and validate a predictive model for osteoporosis and osteopenia prediction by fusing deep transfer learning (DTL) features and classical radiomics features based on single-source dual-energy computed tomography (C...
RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to uti...
RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) statu...
RATIONALE AND OBJECTIVES: To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP...
RATIONALE AND OBJECTIVES: To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) le...
RATIONALE AND OBJECTIVES: To evaluate the performance of deep learning (DL) in predicting different breast cancer molecular subtypes using DCE-MRI from two institutes.
RATIONALE AND OBJECTIVES: To systematically evaluate the application value of radiomics and deep learning (DL) in the differential diagnosis of benign and malignant soft tissue tumors (STTs).