BACKGROUND: In oncology, the correct determination of nodal metastatic disease is essential for patient management, as patient treatment and prognosis are closely linked to the stage of the disease. The aim of the study was to develop a tool for auto...
BACKGROUND: Reidentification of prior nodules for temporal comparison is an important but time-consuming step in lung cancer screening. We develop and evaluate an automated nodule detector that utilizes the axial-slice number of nodules found in radi...
OBJECTIVE: To investigate left atrial shape differences on CT scans of atrial fibrillation (AF) patients with (AF+) versus without (AF-) post-ablation recurrence and whether these shape differences predict AF recurrence.
BACKGROUND: Non-invasive imaging is of interest for tracking the progression of atherosclerosis in the carotid bifurcation, and segmenting this region into its constituent branch arteries is necessary for analyses. The purpose of this study was to va...
BACKGROUND: To validate and compare various MRI-based radiomics models to evaluate treatment response to neoadjuvant chemoradiotherapy (nCRT) of rectal cancer.
BACKGROUND: Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only ...
BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate th...
BACKGROUND: Glaucoma is an eye disease that causes vision loss and even blindness. The cup to disc ratio (CDR) is an important indicator for glaucoma screening and diagnosis. Accurate segmentation for the optic disc and cup helps obtain CDR. Although...
BACKGROUND: The increased availability and usage of modern medical imaging induced a strong need for automatic medical image segmentation. Still, current image segmentation platforms do not provide the required functionalities for plain setup of medi...
BACKGROUND: Deep neural networks (DNNs) are widely investigated in medical image classification to achieve automated support for clinical diagnosis. It is necessary to evaluate the robustness of medical DNN tasks against adversarial attacks, as high-...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.