OBJECTIVES: The objective of this study was to translate a deep learning (DL) approach for semiautomated analysis of body composition (BC) measures from standard of care CT images to investigate the prognostic value of BC in pediatric, adolescent, an...
OBJECTIVES: To evaluate image quality, diagnostic acceptability, and lesion conspicuity in abdominal dual-energy CT (DECT) using deep learning image reconstruction (DLIR) compared to those using adaptive statistical iterative reconstruction-V (Asir-V...
OBJECTIVES: To investigate the predictive performance of the deep learning radiomics (DLR) model integrating pretreatment ultrasound imaging features and clinical characteristics for evaluating therapeutic response after neoadjuvant chemotherapy (NAC...
OBJECTIVE: To investigate the image quality and lesion conspicuity of a deep-learning-based contrast-boosting (DL-CB) algorithm on double-low-dose (DLD) CT of simultaneous reduction of radiation and contrast doses in participants at high-risk for hep...
OBJECTIVES: Acute ischemic stroke (AIS) is an emergency requiring both fast and informative MR sequences. We aimed to assess the performance of an artificial intelligence-enhanced ultrafast (UF) protocol, compared to the reference protocol, in the AI...
OBJECTIVES: To evaluate a deep learning model for automated and interpretable classification of central canal stenosis, neural foraminal stenosis, and facet arthropathy from lumbar spine MRI.
OBJECTIVES: This study aimed to investigate whether a deep learning (DL) model based on preoperative MR images of primary tumors can predict lymph node metastasis (LNM) in patients with stage T1-2 rectal cancer.
OBJECTIVES: We aimed to develop and validate a deep learning system (DLS) by using an auxiliary section that extracts and outputs specific ultrasound diagnostic features to improve the explainable, clinical relevant utility of using DLS for detecting...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.