AI Medical Compendium Journal:
Nucleic acids research

Showing 21 to 30 of 228 articles

Deciphering the biosynthetic potential of microbial genomes using a BGC language processing neural network model.

Nucleic acids research
Biosynthetic gene clusters (BGCs), key in synthesizing microbial secondary metabolites, are mostly hidden in microbial genomes and metagenomes. To unearth this vast potential, we present BGC-Prophet, a transformer-based language model for BGC predict...

Analysis of RNA translation with a deep learning architecture provides new insight into translation control.

Nucleic acids research
Accurate annotation of coding regions in RNAs is essential for understanding gene translation. We developed a deep neural network to directly predict and analyze translation initiation and termination sites from RNA sequences. Trained with human tran...

DRLiPS: a novel method for prediction of druggable RNA-small molecule binding pockets using machine learning.

Nucleic acids research
Ribonucleic Acid (RNA) is the central conduit for information transfer in the cell. Identifying potential RNA targets in disease conditions is a challenging task, given the vast repertoire of functional non-coding RNAs in a human cell. A potential dr...

A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences.

Nucleic acids research
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result...

stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics.

Nucleic acids research
Spatial transcriptomics technology has revolutionized our understanding of cellular systems by capturing RNA transcript levels in their original spatial context. Single-cell spatial transcriptomics (scST) offers single-cell resolution expression leve...

Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data.

Nucleic acids research
Gene regulatory networks (GRNs) provide a global representation of how genetic/genomic information is transferred in living systems and are a key component in understanding genome regulation. Single-cell multiome data provide unprecedented opportunit...

Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time.

Nucleic acids research
In infected individuals, viruses are present as a population consisting of dominant and minor variant genomes. Most databases contain information on the dominant genome sequence. Since the emergence of SARS-CoV-2 in late 2019, variants have been sele...

Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data.

Nucleic acids research
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific...

Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states.

Nucleic acids research
To understand the complex relationship between histone mark activity and gene expression, recent advances have used in silico predictions based on large-scale machine learning models. However, these approaches have omitted key contributing factors li...

Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning.

Nucleic acids research
Machine learning (ML) has shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics disco...