AIMC Journal:
Scientific reports

Showing 2191 to 2200 of 6055 articles

Real-time segmentation of biliary structure in pure laparoscopic donor hepatectomy.

Scientific reports
Pure laparoscopic donor hepatectomy (PLDH) has become a standard practice for living donor liver transplantation in expert centers. Accurate understanding of biliary structures is crucial during PLDH to minimize the risk of complications. This study ...

Effectiveness of data-augmentation on deep learning in evaluating rapid on-site cytopathology at endoscopic ultrasound-guided fine needle aspiration.

Scientific reports
Rapid on-site cytopathology evaluation (ROSE) has been considered an effective method to increase the diagnostic ability of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA); however, ROSE is unavailable in most institutes worldwide due t...

CNVoyant a machine learning framework for accurate and explainable copy number variant classification.

Scientific reports
The precise classification of copy number variants (CNVs) presents a significant challenge in genomic medicine, primarily due to the complex nature of CNVs and their diverse impact on rare genetic diseases (RGDs). This complexity is compounded by the...

Feature-based detection of breast cancer using convolutional neural network and feature engineering.

Scientific reports
Breast cancer (BC) is a prominent cause of female mortality on a global scale. Recently, there has been growing interest in utilizing blood and tissue-based biomarkers to detect and diagnose BC, as this method offers a non-invasive approach. To impro...

Automated ventricular segmentation and shunt failure detection using convolutional neural networks.

Scientific reports
While ventricular shunts are the main treatment for adult hydrocephalus, shunt malfunction remains a common problem that can be challenging to diagnose. Computer vision-derived algorithms present a potential solution. We designed a feasibility study ...

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Scientific reports
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...

Explainability of CNN-based Alzheimer's disease detection from online handwriting.

Scientific reports
With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning technique...

Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China.

Scientific reports
This study aimed to investigate the advantages and applications of machine learning models in predicting the risk of allergic rhinitis (AR) in children aged 2-8, compared to traditional logistic regression. The study analyzed questionnaire data from ...

Explainable machine learning model for predicting paratracheal lymph node metastasis in cN0 papillary thyroid cancer.

Scientific reports
Prophylactic dissection of paratracheal lymph nodes in clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC) remains controversial. This study aims to integrate preoperative and intraoperative variables to compare traditional nomogra...

Length-scale study in deep learning prediction for non-small cell lung cancer brain metastasis.

Scientific reports
Deep learning-assisted digital pathology has demonstrated the potential to profoundly impact clinical practice, even surpassing human pathologists in performance. However, as deep neural network (DNN) architectures grow in size and complexity, their ...