AIMC Topic: Living Donors

Clear Filters Showing 1 to 10 of 50 articles

Personalized prediction model generated with machine learning for kidney function one year after living kidney donation.

Scientific reports
Living kidney donors typically experience approximately a 30% reduction in kidney function after donation, although the degree of reduction varies among individuals. This study aimed to develop a machine learning (ML) model to predict serum creatinin...

Advanced prognostic modeling with deep learning: assessing long-term outcomes in liver transplant recipients from deceased and living donors.

Journal of translational medicine
BACKGROUND: Predicting long-term outcomes in liver transplantation remain a challenging endeavor. This research aims to harness the power of deep learning to develop an advanced prognostic model for assessing long-term outcomes, with a specific focus...

Advancing health equity: evaluating AI translations of kidney donor information for Spanish speakers.

Frontiers in public health
BACKGROUND: Health equity and access to essential medical information remain significant challenges, especially for the Spanish-speaking Hispanic population, which faces barriers in accessing living kidney donation opportunities. ChatGPT, an AI langu...

Artificial intelligence assisted risk prediction in organ transplantation: a UK Live-Donor Kidney Transplant Outcome Prediction tool.

Renal failure
Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to...

The role of artificial intelligence measured preoperative kidney volume in predicting kidney function loss in elderly kidney donors: a multicenter cohort study.

International journal of surgery (London, England)
BACKGROUND: The increasing use of kidneys from elderly donors raises concerns due to age-related nephron loss. Combined with nephrectomy, this loss of nephrons markedly increases the risk of developing chronic kidney disease (CKD). This study aimed t...

Real-time segmentation of biliary structure in pure laparoscopic donor hepatectomy.

Scientific reports
Pure laparoscopic donor hepatectomy (PLDH) has become a standard practice for living donor liver transplantation in expert centers. Accurate understanding of biliary structures is crucial during PLDH to minimize the risk of complications. This study ...

A Predictive Model of Pressure Injury in Children Undergoing Living Donor Liver Transplantation Based on Machine Learning Algorithm.

Journal of advanced nursing
AIMS: The aim of our study was to formulate and validate a prediction model using machine learning algorithms to forecast the risk of pressure injuries (PIs) in children undergoing living donor liver transplantation (LDLT).

Artificial intelligence-based model for the recurrence of hepatocellular carcinoma after liver transplantation.

Surgery
BACKGROUND: Artificial intelligence-based models might improve patient selection for liver transplantation in hepatocellular carcinoma. The objective of the current study was to develop artificial intelligence-based deep learning models and determine...

Prediction of post-donation renal function using machine learning techniques and conventional regression models in living kidney donors.

Journal of nephrology
BACKGROUND: Accurate prediction of renal function following kidney donation and careful selection of living donors are essential for living-kidney donation programs. We aimed to develop a prediction model for post-donation renal function following li...

First experiences with machine learning predictions of accelerated declining eGFR slope of living kidney donors 3 years after donation.

Journal of nephrology
BACKGROUND: Living kidney donors are screened pre-donation to estimate the risk of end-stage kidney disease (ESKD). We evaluate Machine Learning (ML) to predict the progression of kidney function deterioration over time using the estimated GFR (eGFR)...