AIMC Topic: Acute Disease

Clear Filters Showing 1 to 10 of 169 articles

Deep learning detects retropharyngeal edema on MRI in patients with acute neck infections.

European radiology experimental
BACKGROUND: In acute neck infections, magnetic resonance imaging (MRI) shows retropharyngeal edema (RPE), which is a prognostic imaging biomarker for a severe course of illness. This study aimed to develop a deep learning-based algorithm for the auto...

Elucidating predictors of preoperative acute heart failure in older people with hip fractures through machine learning and SHAP analysis: a retrospective cohort study.

BMC geriatrics
BACKGROUND: Acute heart failure (AHF) has become a significant challenge in older people with hip fractures. Timely identification and assessment of preoperative AHF have become key factors in reducing surgical risks and improving outcomes.

Pseudotargeted metabolomics profiles potential damage-associated molecular patterns as machine learning predictors for acute pancreatitis.

Journal of pharmaceutical and biomedical analysis
Acute pancreatitis (AP) is a common gastrointestinal disease characterized by pancreatic cell damage and inflammation. Given the early clinical diagnosis and management challenges, exploring novel analytical frameworks from new orientations for inter...

Monitoring effort and respiratory drive in patients with acute respiratory failure.

Current opinion in critical care
PURPOSE OF REVIEW: Accurate monitoring of respiratory drive and inspiratory effort is crucial for optimizing ventilatory support during acute respiratory failure. This review evaluates current and emerging bedside methods for assessing respiratory dr...

Machine Learning-Guided Fluid Resuscitation for Acute Pancreatitis Improves Outcomes.

Clinical and translational gastroenterology
INTRODUCTION: Ariel Dynamic Acute Pancreatitis Tracker (ADAPT) is an artificial intelligence tool using mathematical algorithms to predict severity and manage fluid resuscitation needs based on the physiologic parameters of individual patients. Our a...

Prognostic value of SAPS II score for 28-day mortality in ICU patients with acute pulmonary embolism.

International journal of cardiology
BACKGROUND: Acute pulmonary embolism (APE) is a common and life-threatening emergency in intensive care units (ICUs). Effective risk assessment tools are essential to improve patient outcomes. This study aims to evaluate the association between Simpl...

Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions.

The American journal of emergency medicine
BACKGROUND: The rapid advancement of artificial intelligence (AI) has great ability to impact healthcare. Chest X-rays are essential for diagnosing acute thoracic conditions in the emergency department (ED), but interpretation delays due to radiologi...

Development and validation of a machine learning model to predict hemostatic intervention in patients with acute upper gastrointestinal bleeding.

BMC medical informatics and decision making
BACKGROUND: Acute upper gastrointestinal bleeding (UGIB) is common in clinical practice and has a wide range of severity. Along with medical therapy, endoscopic intervention is the mainstay treatment for hemostasis in high-risk rebleeding lesions. Pr...

Measurement of adipose body composition using an artificial intelligence-based CT Protocol and its association with severe acute pancreatitis in hospitalized patients.

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
BACKGROUND/OBJECTIVES: The clinical utility of body composition in predicting the severity of acute pancreatitis (AP) remains unclear. We aimed to measure body composition using artificial intelligence (AI) to predict severe AP in hospitalized patien...

Development and validation of automated three-dimensional convolutional neural network model for acute appendicitis diagnosis.

Scientific reports
Rapid, accurate preoperative imaging diagnostics of appendicitis are critical in surgical decisions of emergency care. This study developed a fully automated diagnostic framework using a 3D convolutional neural network (CNN) to identify appendicitis ...