Lung adenocarcinoma (LUAD) is a major challenge in oncology due to its complex molecular structure and generally poor prognosis. The aim of this study was to find diagnostic markers and therapeutic targets for LUAD by integrating differential gene ex...
Cancer-associated fibroblasts (CAFs) play important roles in the progression of lung adenocarcinoma (LUAD). We examined CAF subgroups via gene ontology, pseudo-time, and cell communication analyses and explored their prognostic value in LUAD using a ...
Biomedical physics & engineering express
Jun 16, 2025
Current lung cancer diagnostic techniques primarily focus on tissue subtype classification, yet remain inadequate in distinguishing pathological progression subtypes (particularly between adenocarcinomaand invasive adenocarcinoma) on frozen sections....
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).
OBJECTIVE: Lung adenocarcinoma (LUAD) continues to be a primary cause of cancer-related mortality globally, highlighting the urgent need for novel insights finto its molecular mechanisms. This study aims to investigate the relationship between gene e...
Drug response prediction (DRP) is a central task in the era of precision medicine. Over the past decade, the emergence of deep learning (DL) has greatly contributed to addressing DRP challenges. Notably, the prediction of DRP for cancer cell lines be...
Lung adenocarcinoma (LUAD) constitutes a major cause of cancer-related fatalities worldwide. Early identification of malignant pulmonary nodules constitutes the most effective approach to reducing the mortality of LUAD. Despite the wide application o...
Cancer biomarkers : section A of Disease markers
Apr 2, 2025
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.