AIMC Topic: Adult

Clear Filters Showing 1041 to 1050 of 14440 articles

Forecasting optimal treatments in relapsed/refractory mature T- and NK-cell lymphomas: A global PETAL Consortium study.

British journal of haematology
There is no standard of care in relapsed/refractory T-cell/natural killer-cell lymphomas. Patients often cycle through cytotoxic chemotherapy (CC), epigenetic modifiers (EM) or small molecule inhibitors (SMI) empirically. Ideal therapy at each line r...

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Identification of relevant features using SEQENS to improve supervised machine learning models predicting AML treatment outcome.

BMC medical informatics and decision making
BACKGROUND AND OBJECTIVE: This study has two main objectives. First, to evaluate a feature selection methodology based on SEQENS, an algorithm for identifying relevant variables. Second, to validate machine learning models that predict the risk of co...

Predicting preeclampsia in early pregnancy using clinical and laboratory data via machine learning model.

BMC medical informatics and decision making
BACKGROUND: This study was performed to characterize the relationship of various laboratory test indicators with clinical information and Preeclampsia (PE) development. Then, prediction models for early-onset preeclampsia (EOPE), late-onset preeclamp...

Is AI the future of evaluation in medical education?? AI vs. human evaluation in objective structured clinical examination.

BMC medical education
BACKGROUND: Objective Structured Clinical Examinations (OSCEs) are widely used in medical education to assess students' clinical and professional skills. Recent advancements in artificial intelligence (AI) offer opportunities to complement human eval...

Perspectives and Experiences With Large Language Models in Health Care: Survey Study.

Journal of medical Internet research
BACKGROUND: Large language models (LLMs) are transforming how data is used, including within the health care sector. However, frameworks including the Unified Theory of Acceptance and Use of Technology highlight the importance of understanding the fa...

The Relationship Between Anxiety and Readiness Levels Regarding Artificial Intelligence in Midwives: An Intergenerational Comparative Study.

Computers, informatics, nursing : CIN
This study aimed to compare Generations X, Y, and Z in terms of anxiety and readiness levels regarding artificial intelligence and investigate the relationship between anxiety and readiness levels regarding artificial intelligence in midwives across ...

Validation of an Artificial Intelligence-Powered Virtual Assistant for Emergency Triage in Neurology.

The neurologist
OBJECTIVES: Neurological emergencies pose significant challenges in medical care in resource-limited countries. Artificial intelligence (AI), particularly health chatbots, offers a promising solution. Rigorous validation is required to ensure safety ...

Utilizing explainable machine learning for progression-free survival prediction in high-grade serous ovarian cancer: insights from a prospective cohort study.

International journal of surgery (London, England)
BACKGROUND: High-grade serous ovarian cancer (HGSOC) remains one of the most challenging gynecological malignancies, with over 70% of ovarian cancer patients ultimately experiencing disease progression. The current prognostic tools for progression-fr...

Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.

Journal of thoracic imaging
PURPOSE: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.