AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aged, 80 and over

Showing 21 to 30 of 3142 articles

Clear Filters

Annotation-Free Whole-Slide Image Analysis Method to Assess Immune Infiltration in Colorectal Cancer.

JCO precision oncology
PURPOSE: Tumor-infiltrating lymphocytes (TILs) play a crucial role in host antitumor processes. High level of TILs is associated with better outcomes for patients. We aim to automatically quantify TILs without any nuclei annotation and further constr...

Concordance of ChatGPT artificial intelligence decision-making in colorectal cancer multidisciplinary meetings: retrospective study.

BJS open
BACKGROUND: The objective of this study was to evaluate the concordance between therapeutic recommendations proposed by a multidisciplinary team meeting and those generated by a large language model (ChatGPT) for colorectal cancer. Although multidisc...

Diagnosis of Sarcopenia Using Convolutional Neural Network Models Based on Muscle Ultrasound Images: Prospective Multicenter Study.

Journal of medical Internet research
BACKGROUND: Early detection is clinically crucial for the strategic handling of sarcopenia, yet the screening process, which includes assessments of muscle mass, strength, and function, remains complex and difficult to access.

Prediction of the functional outcome of intensive inpatient rehabilitation after stroke using machine learning methods.

Scientific reports
An accurate and reliable functional prognosis is vital to stroke patients addressing rehabilitation, to their families, and healthcare providers. This study aimed at developing and validating externally patient-wise prognostic models of the global fu...

Improving lower-extremity artery depiction and diagnostic confidence using dual-energy technique and popliteal artery monitoring in dual-low dose CT angiography.

Scientific reports
To assess the utility of dual-energy CT scanning (DECTs) with popliteal artery (PA) monitoring in dual low-dose (radiation and contrast) lower-extremity CT angiography (LE-CTA). 135 patients undergoing LE-CTA were prospectively included and divided i...

Physiological comparison of noninvasive ventilation and high-flow nasal oxygen on inspiratory efforts and tidal volumes after extubation: a randomized crossover trial.

Critical care (London, England)
BACKGROUND: Extubation failure leading to reintubation is associated with high mortality. In patients at high-risk of extubation failure, clinical practice guidelines recommend prophylactic non-invasive ventilation (NIV) over high-flow nasal oxygen (...

Machine learning-based survival models for predicting rehospitalization of older hip fracture patients: a retrospective cohort study.

BMC musculoskeletal disorders
PURPOSE: To evaluate machine learning-based survival model roles in predicting rehospitalization after hip fractures to improve reduce the burden on the healthcare system.

Using a Robot to Address the Well-Being, Social Isolation, and Loneliness of Care Home Residents via Video Calls: Qualitative Feasibility Study.

JMIR formative research
BACKGROUND: About 40,000 people are living in Norwegian care homes, where a majority are living with a dementia diagnosis. Social isolation and loneliness are common issues affecting care home residents' quality of life. Due to visitation restriction...

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...

Dual-stream algorithms for dementia detection: Harnessing structured and unstructured electronic health record data, a novel approach to prevalence estimation.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Identifying individuals with dementia is crucial for prevalence estimation and service planning, but reliable, scalable methods are lacking. We developed novel set algorithms using both structured and unstructured electronic health reco...