BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis and is understudied. Based on the clinical features of patients with ICC, we constructed machine learning models to understand their importance on survival and to accurately deter...
This study aimed to develop a deep learning model to predict the risk stratification of all-cause death for older people with disability, providing guidance for long-term care plans. Based on the government-led long-term care insurance program in a p...
Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking ...
Sarcopenic obesity (SO) is characterized by concomitant sarcopenia and obesity and presents a high risk of disability, morbidity, and mortality among older adults. However, predictions based on sequential neural network SO studies and the relationshi...
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Jun 24, 2024
Freezing of gait (FoG) is a prevalent symptom among individuals with Parkinson's disease and related disorders. FoG detection from videos has been developed recently; however, the process requires using videos filmed within a controlled environment. ...
The spine journal : official journal of the North American Spine Society
Jun 22, 2024
BACKGROUND CONTEXT: Lumbar spinal canal stenosis (LSCS) is the most common spinal degenerative disorder in elderly people and usually first seen by primary care physicians or orthopedic surgeons who are not spine surgery specialists. Magnetic resonan...
Computer methods and programs in biomedicine
Jun 22, 2024
BACKGROUND AND OBJECTIVE: Alzheimer's disease dementia (ADD) is well known to induce alterations in both structural and functional brain connectivity. However, reported changes in connectivity are mostly limited to global/local network features, whic...
This study aimed to develop a new simple and effective prognostic model using artificial intelligence (AI)-based chest radiograph (CXR) results to predict the outcomes of pneumonia. Patients aged > 18 years, admitted the treatment of pneumonia betwee...
OBJECTIVE: To propose a convolutional neural network (EmbNet) for automatic pulmonary embolism detection on computed tomography pulmonary angiogram (CTPA) scans and to assess its diagnostic performance.
BACKGROUND: Patients with hip fractures frequently need to receive perioperative transfusions of concentrated red blood cells due to preoperative anemia or surgical blood loss. However, the use of perioperative blood products increases the risk of ad...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.