AIMC Topic: Aged

Clear Filters Showing 3441 to 3450 of 13197 articles

Restoring of Interhemispheric Symmetry in Patients With Stroke Following Bilateral or Unilateral Robot-Assisted Upper-Limb Rehabilitation: A Pilot Randomized Controlled Trial.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Bilateral robotic rehabilitation has proven helpful in the recovery of upper limb motor function in patients with stroke, but its effects on the cortical reorganization mechanisms underlying recovery are still unclear. This pilot Randomized Controlle...

Interpretable machine learning models for the prediction of all-cause mortality and time to death in hemodialysis patients.

Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy
INTRODUCTION: The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all-cause mortality and time to ...

An Artificial Intelligence Algorithm Integrated into the Clinical Workflow Can Ensure High Quality Acute Intracranial Hemorrhage CT Diagnostic.

Clinical neuroradiology
PURPOSE: Intracranial hemorrhage (ICH) is a life-threatening condition requiring rapid diagnostic and therapeutic action. This study evaluates whether Artificial intelligence (AI) can provide high-quality ICH diagnostics and turnaround times suitable...

Determination of spectroscopy marker of atherosclerotic carotid stenosis using FTIR-ATR combined with machine learning and chemometrics analyses.

Nanomedicine : nanotechnology, biology, and medicine
Atherosclerotic carotid stenosis (ACS) is a recognized risk factor for ischemic stroke. Currently, the gold diagnostic standard is Doppler ultrasound, the results of which do not provide certainty whether a given person should be qualified for surger...

Applying machine learning approaches for predicting obesity risk using US health administrative claims database.

BMJ open diabetes research & care
INTRODUCTION: Body mass index (BMI) is inadequately recorded in US administrative claims databases. We aimed to validate the sensitivity and positive predictive value (PPV) of BMI-related diagnosis codes using an electronic medical records (EMR) clai...

Impact of the number of dissected lymph nodes on machine learning-based prediction of postoperative lung cancer recurrence: a single-hospital retrospective cohort study.

BMJ open respiratory research
BACKGROUND: The optimal number of lymph nodes to be dissected during lung cancer surgery to minimise the postoperative recurrence risk remains undetermined. This study aimed to elucidate the impact of the number of dissected lymph nodes on the risk o...

Identifying Potential Factors Associated With Racial Disparities in COVID-19 Outcomes: Retrospective Cohort Study Using Machine Learning on Real-World Data.

JMIR public health and surveillance
BACKGROUND: Racial disparities in COVID-19 incidence and outcomes have been widely reported. Non-Hispanic Black patients endured worse outcomes disproportionately compared with non-Hispanic White patients, but the epidemiological basis for these obse...

Real-world application of a 3D deep learning model for detecting and localizing cerebral microbleeds.

Acta neurochirurgica
BACKGROUND: Detection and localization of cerebral microbleeds (CMBs) is crucial for disease diagnosis and treatment planning. However, CMB detection is labor-intensive, time-consuming, and challenging owing to its visual similarity to mimics. This s...

Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to...

Automatic Segmentation of Ultrasound-Guided Quadratus Lumborum Blocks Based on Artificial Intelligence.

Journal of imaging informatics in medicine
Ultrasound-guided quadratus lumborum block (QLB) technology has become a widely used perioperative analgesia method during abdominal and pelvic surgeries. Due to the anatomical complexity and individual variability of the quadratus lumborum muscle (Q...