AIMC Topic: Aging

Clear Filters Showing 51 to 60 of 421 articles

Insights to aging prediction with AI based epigenetic clocks.

Epigenomics
Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, h...

Social Robots and Sensors for Enhanced Aging at Home: Mixed Methods Study With a Focus on Mobility and Socioeconomic Factors.

JMIR aging
BACKGROUND: Population aging affects society, with a profound impact on daily activities for those of a low socioeconomic status and with motor impairments. Social assistive robots (SARs) and monitoring technologies can improve older adults' well-bei...

Machine learning based on event-related oscillations of working memory differentiates between preclinical Alzheimer's disease and normal aging.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: To apply machine learning approaches on EEG event-related oscillations (ERO) to discriminate preclinical Alzheimer's disease (AD) from age- and sex-matched controls.

An interactive AI-driven platform for fish age reading.

PloS one
Fish age is an important biological variable required as part of routine stock assessment and analysis of fish population dynamics. Age estimates are traditionally obtained by human experts from the count of ring-like patterns along calcified structu...

Artificial intelligence modeling of biomarker-based physiological age: Impact on phase 1 drug-metabolizing enzyme phenotypes.

CPT: pharmacometrics & systems pharmacology
Age and aging are important predictors of health status, disease progression, drug kinetics, and effects. The purpose was to develop ensemble learning-based physiological age (PA) models for evaluating drug metabolism. National Health and Nutrition E...

Explaining deep learning models for age-related gait classification based on acceleration time series.

Computers in biology and medicine
BACKGROUND: Gait analysis holds significant importance in monitoring daily health, particularly among older adults. Advancements in sensor technology enable the capture of movement in real-life environments and generate big data. Machine learning, no...

Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury.

Neuroinformatics
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compa...

Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap.

Neurology
BACKGROUND AND OBJECTIVES: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific eff...

Machine learning reveals correlations between brain age and mechanics.

Acta biomaterialia
Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and di...

An explainable machine learning estimated biological age based on morphological parameters of the spine.

GeroScience
Accurately estimating biological age is beneficial for measuring aging and predicting risk. It is widely accepted that the prevalence of spine compression increases significantly with age. However, biological age based on vertebral morphological data...