AIMC Topic: Base Sequence

Clear Filters Showing 61 to 70 of 172 articles

Sequence-to-function deep learning frameworks for engineered riboregulators.

Nature communications
While synthetic biology has revolutionized our approaches to medicine, agriculture, and energy, the design of completely novel biological circuit components beyond naturally-derived templates remains challenging due to poorly understood design rules....

LncLocation: Efficient Subcellular Location Prediction of Long Non-Coding RNA-Based Multi-Source Heterogeneous Feature Fusion.

International journal of molecular sciences
Recent studies uncover that subcellular location of long non-coding RNAs (lncRNAs) can provide significant information on its function. Due to the lack of experimental data, the number of lncRNAs is very limited, experimentally verified subcellular l...

Identification of the human DPR core promoter element using machine learning.

Nature
The RNA polymerase II (Pol II) core promoter is the strategic site of convergence of the signals that lead to the initiation of DNA transcription, but the downstream core promoter in humans has been difficult to understand. Here we analyse the human ...

A machine learning approach to optimizing cell-free DNA sequencing panels: with an application to prostate cancer.

BMC cancer
BACKGROUND: Cell-free DNA's (cfDNA) use as a biomarker in cancer is challenging due to genetic heterogeneity of malignancies and rarity of tumor-derived molecules. Here we describe and demonstrate a novel machine-learning guided panel design strategy...

Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.

Scientific reports
Transcription factors (TFs) regulate the gene expression of their target genes by binding to the regulatory sequences of target genes (e.g., promoters and enhancers). To fully understand gene regulatory mechanisms, it is crucial to decipher the relat...

Sequencing enabling design and learning in synthetic biology.

Current opinion in chemical biology
The ability to read and quantify nucleic acids such as DNA and RNA using sequencing technologies has revolutionized our understanding of life. With the emergence of synthetic biology, these tools are now being put to work in new ways - enabling de no...

Prediction and analysis of prokaryotic promoters based on sequence features.

Bio Systems
Promoter recognition is an important part of functional genomic annotation but a difficult problem. Many studies have been carried out to address this issue. However, they still cannot meet application needs. Most of the methods exhibit specificity, ...

DNC4mC-Deep: Identification and Analysis of DNA N4-Methylcytosine Sites Based on Different Encoding Schemes By Using Deep Learning.

Cells
N4-methylcytosine as one kind of modification of DNA has a critical role which alters genetic performance such as protein interactions, conformation, stability in DNA as well as the regulation of gene expression same cell developmental and genomic im...

Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks.

Molecular omics
MOTIVATION: enhancers play an important role in the regulation of gene expression during spermatogenesis. The development of ChIP-Chip and ChIP-Seq sequencing technology has enabled researchers to focus on the relationship between enhancers and DNA s...

CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.

BMC bioinformatics
BACKGROUND: The latest works on CRISPR genome editing tools mainly employs deep learning techniques. However, deep learning models lack explainability and they are harder to reproduce. We were motivated to build an accurate genome editing tool using ...