AIMC Topic: Biomarkers, Tumor

Clear Filters Showing 131 to 140 of 1131 articles

Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification.

BMC bioinformatics
The advent of high-throughput sequencing technologies, such as DNA microarray and DNA sequencing, has enabled effective analysis of cancer subtypes and targeted treatment. Furthermore, numerous studies have highlighted the capability of graph neural ...

Machine learning based intratumor heterogeneity related signature for prognosis and drug sensitivity in breast cancer.

Scientific reports
Intratumor heterogeneity (ITH) is involved in tumor evolution and drug resistance. Drug sensitivity shows discrepancy in different breast cancer (BRCA) patients due to ITH. The genes mediating ITH in BRCA and their role in predicting prognosis and dr...

Toward Accurate Deep Learning-Based Prediction of Ki67, ER, PR, and HER2 Status From H&E-Stained Breast Cancer Images.

Applied immunohistochemistry & molecular morphology : AIMM
Despite improvements in machine learning algorithms applied to digital pathology, only moderate accuracy, to predict molecular information from histology alone, has been achieved so far. One of the obstacles is the lack of large data sets to properly...

The Role of Eosinophils, Eosinophil-Related Cytokines and AI in Predicting Immunotherapy Efficacy in NSCLC Cancer.

Biomolecules
Immunotherapy and chemoimmunotherapy are standard treatments for non-oncogene-addicted advanced non-small cell lung cancer (NSCLC). Currently, a limited number of biomarkers, including programmed death-ligand 1 (PD-L1) expression, microsatellite inst...

Proposed Comprehensive Methodology Integrated with Explainable Artificial Intelligence for Prediction of Possible Biomarkers in Metabolomics Panel of Plasma Samples for Breast Cancer Detection.

Medicina (Kaunas, Lithuania)
: Breast cancer (BC) is the most common type of cancer in women, accounting for more than 30% of new female cancers each year. Although various treatments are available for BC, most cancer-related deaths are due to incurable metastases. Therefore, th...

AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Emerging evidence underscores the potential application of artificial intelligence (AI) in discovering noninvasive blood biomarkers. However, the diagnostic value of AI-derived blood biomarkers for ovarian cancer (OC) remains inconsistent...

A tumor-infiltrating B lymphocytes -related index based on machine-learning predicts prognosis and immunotherapy response in lung adenocarcinoma.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in shaping the immune microenvironment of tumors (TIME) and in the progression of lung adenocarcinoma (LUAD). However, there remains a scarcity of research that has thoroughly...

Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches.

Computers in biology and medicine
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysi...

Machine Learning and Mendelian Randomization Reveal a Tumor Immune Cell Profile for Predicting Bladder Cancer Risk and Immunotherapy Outcomes.

The American journal of pathology
This study's objective was to develop predictive models for bladder cancer (BLCA) using tumor infiltrated immune cell (TIIC)-related genes. Multiple RNA expression data and scRNA-seq were downloaded from the TCGA and GEO databases. A tissue specifici...

Development of PDAC diagnosis and prognosis evaluation models based on machine learning.

BMC cancer
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and highly aggressive, often leading to poor patient prognosis. Existing serum biomarkers like CA19-9 are limited in early diagnosis, failing to meet clinical needs. Mac...