AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 381 to 390 of 980 articles

Clear Filters

Rapid detection of lung cancer based on serum Raman spectroscopy and a support vector machine: a case-control study.

BMC cancer
BACKGROUND: Early screening and detection of lung cancer is essential for the diagnosis and prognosis of the disease. In this paper, we investigated the feasibility of serum Raman spectroscopy for rapid lung cancer screening.

Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images.

Scientific reports
This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were rando...

Glycosylphosphatidylinositol anchor biosynthesis pathway-based biomarker identification with machine learning for prognosis and T cell exhaustion status prediction in breast cancer.

Frontiers in immunology
As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical...

Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC.

Scientific reports
The tumor microenvironment (TME) plays a fundamental role in tumorigenesis, tumor progression, and anti-cancer immunity potential of emerging cancer therapeutics. Understanding inter-patient TME heterogeneity, however, remains a challenge to efficien...

Image-based deep learning model using DNA methylation data predicts the origin of cancer of unknown primary.

Neoplasia (New York, N.Y.)
Cancer of unknown primary (CUP) is a rare type of metastatic cancer in which the origin of the tumor is unknown. Since the treatment strategy for patients with metastatic tumors depends on knowing the primary site, accurate identification of the orig...

Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy.

Frontiers in immunology
INTRODUCTION: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and person...

Integrated machine learning algorithms reveal a bone metastasis-related signature of circulating tumor cells in prostate cancer.

Scientific data
Bone metastasis is an essential factor affecting the prognosis of prostate cancer (PCa), and circulating tumor cells (CTCs) are closely related to distant tumor metastasis. Here, the protein-protein interaction (PPI) networks and Cytoscape applicatio...

Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Functional & integrative genomics
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 1...

Integrated machine learning identifies a cellular senescence-related prognostic model to improve outcomes in uterine corpus endometrial carcinoma.

Frontiers in immunology
BACKGROUND: Uterine Corpus Endometrial Carcinoma (UCEC) stands as one of the prevalent malignancies impacting women globally. Given its heterogeneous nature, personalized therapeutic approaches are increasingly significant for optimizing patient outc...