AIMC Topic: Biomarkers

Clear Filters Showing 171 to 180 of 1803 articles

Multi-omics integration and machine learning identify and validate neutrophil extracellular trap-associated gene signatures in chronic rhinosinusitis with nasal polyps.

Clinical immunology (Orlando, Fla.)
This study aimed to explore the molecular characteristics of neutrophil extracellular traps (NETs) in chronic rhinosinusitis with nasal polyps (CRSwNP). Differentially expressed gene analysis, weighted gene co-expression network analysis, and machine...

Machine learning based model for the early detection of Gestational Diabetes Mellitus.

BMC medical informatics and decision making
BACKGROUND: Gestational Diabetes Mellitus (GDM) is one of the most common medical complications during pregnancy. In the Gulf region, the prevalence of GDM is higher than in other parts of the world. Thus, there is a need for the early detection of G...

Biological age prediction and NAFLD risk assessment: a machine learning model based on a multicenter population in Nanchang, Jiangxi, China.

BMC gastroenterology
BACKGROUND: The objective was to develop a biological age prediction model (NC-BA) for the Chinese population to enrich the relevant studies in this population. And to investigate the association between accelerated age and NAFLD.

Metabolomics and machine learning approaches for diagnostic biomarkers screening in systemic light chain amyloidosis.

Annals of hematology
Delayed diagnosis of systemic light chain (AL) amyloidosis is common and associated with worse survival and early mortality. Current diagnosis still relies on invasive tissue biopsies, highlighting the need for sensitive, noninvasive biomarkers for e...

Individual and integrated indexes of inflammation predicting the risks of mental disorders - statistical analysis and artificial neural network.

BMC psychiatry
OBJECTIVE: The prevalence of mental illness in Taiwan increased. Identifying and mitigating risk factors for mental illness is essential. Inflammation may be a risk factor for mental illness; however, the predictive power of inflammation test values ...

Advancing sepsis diagnosis and immunotherapy machine learning-driven identification of stable molecular biomarkers and therapeutic targets.

Scientific reports
Sepsis represents a significant global health challenge, necessitating early detection and effective treatment for improved outcomes. While traditional inflammatory markers facilitate the diagnosis of sepsis, the aspect of immune suppression remains ...

Unsupervised machine learning identifies biomarkers of disease progression in post-kala-azar dermal leishmaniasis in Sudan.

PLoS neglected tropical diseases
BACKGROUND: Post-kala-azar dermal leishmaniasis (PKDL) appears as a rash in some individuals who have recovered from visceral leishmaniasis caused by Leishmania donovani. Today, basic knowledge of this neglected disease and how to predict its progres...

Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques.

Frontiers in immunology
INTRODUCTION: Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers ...

An explainable non-invasive hybrid machine learning framework for accurate prediction of thyroid-stimulating hormone levels.

Computers in biology and medicine
Machine learning models, including thyroid biomarkers, are increasingly utilized in healthcare for biomarker prediction. These models offer the potential to enhance disease diagnosis through data-driven approaches relying on non-invasive techniques. ...

Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers.

International journal of molecular sciences
Mild cognitive impairment (MCI) is a clinical condition characterized by a decline in cognitive ability and progression of cognitive impairment. It is often considered a transitional stage between normal aging and Alzheimer's disease (AD). This study...