AIMC Topic: Biopsy

Clear Filters Showing 61 to 70 of 452 articles

Artificial intelligence for detection of prostate cancer in biopsies during active surveillance.

BJU international
OBJECTIVES: To evaluate a cancer detecting artificial intelligence (AI) algorithm on serial biopsies in patients with prostate cancer on active surveillance (AS).

AI-based digital pathology provides newer insights into lifestyle intervention-induced fibrosis regression in MASLD: An exploratory study.

Liver international : official journal of the International Association for the Study of the Liver
BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a ...

Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms.

European radiology
OBJECTIVES: Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) anal...

A pathologist-AI collaboration framework for enhancing diagnostic accuracies and efficiencies.

Nature biomedical engineering
In pathology, the deployment of artificial intelligence (AI) in clinical settings is constrained by limitations in data collection and in model transparency and interpretability. Here we describe a digital pathology framework, nuclei.io, that incorpo...

Machine Learning-Based Models for Advanced Fibrosis and Cirrhosis Diagnosis in Chronic Hepatitis B Patients With Hepatic Steatosis.

Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association
BACKGROUND AND AIMS: The global rise of chronic hepatitis B (CHB) superimposed on hepatic steatosis (HS) warrants noninvasive, precise tools for assessing fibrosis progression. This study leveraged machine learning (ML) to develop diagnostic models f...

A deep-learning-based model for assessment of autoimmune hepatitis from histology: AI(H).

Virchows Archiv : an international journal of pathology
Histological assessment of autoimmune hepatitis (AIH) is challenging. As one of the possible results of these challenges, nonclassical features such as bile-duct injury stays understudied in AIH. We aim to develop a deep learning tool (artificial int...

The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI).

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
BACKGROUND: Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretatio...

Deep learning-based risk stratification of preoperative breast biopsies using digital whole slide images.

Breast cancer research : BCR
BACKGROUND: Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer histopathology but has a high inter-assessor variability with many tumours being classified as intermediate grade, NHG2. Here, we evaluate if Dee...

Deep Learning for Histopathological Assessment of Esophageal Adenocarcinoma Precursor Lesions.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Histopathological assessment of esophageal biopsies is a key part in the management of patients with Barrett esophagus (BE) but prone to observer variability and reliable diagnostic methods are needed. Artificial intelligence (AI) is emerging as a po...

Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual biopsy.

International journal of surgery (London, England)
OBJECTIVES: Upper tract urothelial carcinoma (UTUC) is a rare, aggressive lesion, with early detection a key to its management. This study aimed to utilise computed tomographic urogram data to develop machine learning models for predicting tumour gra...