AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chemotherapy, Adjuvant

Showing 21 to 30 of 77 articles

Clear Filters

Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non-Small-Cell Lung Cancer: A Retrospective Study.

Clinical lung cancer
BACKGROUND: Neoadjuvant chemotherapy has variable efficacy in patients with non-small-cell lung cancer (NSCLC), yet reliable noninvasive predictive markers are lacking. This study aimed to develop a radiomics model predicting pathological complete re...

Transforming breast cancer care: harnessing the power of artificial intelligence and imaging for predicting pathological complete response. a narrative review.

JPMA. The Journal of the Pakistan Medical Association
This narrative review explores the transformative potential of Artificial Intelligence (AI) and advanced imaging techniques in predicting Pathological Complete Response (pCR) in Breast Cancer (BC) patients undergoing Neo-Adjuvant Chemotherapy (NACT)....

Is Risk-Stratifying Patients with Colorectal Cancer Using a Deep Learning-Based Prognostic Biomarker Cost-Effective?

PharmacoEconomics
OBJECTIVES: Accurate risk stratification of patients with stage II and III colorectal cancer (CRC) prior to treatment selection enables limited health resources to be efficiently allocated to patients who are likely to benefit from adjuvant chemother...

Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients.

Abdominal radiology (New York)
PURPOSE: Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) patients.

Prediction of recurrence risk in endometrial cancer with multimodal deep learning.

Nature medicine
Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopa...

Predicting response to neoadjuvant chemotherapy for colorectal liver metastasis using deep learning on prechemotherapy cross-sectional imaging.

Journal of surgical oncology
BACKGROUND AND OBJECTIVES: Deep learning models (DLMs) are applied across domains of health sciences to generate meaningful predictions. DLMs make use of neural networks to generate predictions from discrete data inputs. This study employs DLM on pre...

Use of Deep Learning to Evaluate Tumor Microenvironmental Features for Prediction of Colon Cancer Recurrence.

Cancer research communications
UNLABELLED: Deep learning may detect biologically important signals embedded in tumor morphologic features that confer distinct prognoses. Tumor morphologic features were quantified to enhance patient risk stratification within DNA mismatch repair (M...

Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-s...