AI Medical Compendium Topic:
Cohort Studies

Clear Filters Showing 671 to 680 of 1126 articles

Machine Learning for Predicting Complications in Head and Neck Microvascular Free Tissue Transfer.

The Laryngoscope
OBJECTIVES/HYPOTHESIS: Machine learning (ML) is a type of artificial intelligence wherein a computer learns patterns and associations between variables to correctly predict outcomes. The objectives of this study were to 1) use a ML platform to identi...

Assessment of utilization efficiency using machine learning techniques: A study of heterogeneity in preoperative healthcare utilization among super-utilizers.

American journal of surgery
INTRODUCTION: In the United States, 5% of patients represent up to 55% of all health care costs. This study sought to define healthcare utilization patterns among super-utilizers, as well as assess possible variation in patient outcomes.

Design of a deep learning model for automatic scoring of periodic and non-periodic leg movements during sleep validated against multiple human experts.

Sleep medicine
OBJECTIVE: Currently, manual scoring is the gold standard of leg movement scoring (LMs) and periodic LMs (PLMS) in overnight polysomnography (PSG) studies, which is subject to inter-scorer variability. The objective of this study is to design and val...

Ovarian torsion: developing a machine-learned algorithm for diagnosis.

Pediatric radiology
BACKGROUND: Ovarian torsion is a common concern in girls presenting to emergency care with pelvic or abdominal pain. The diagnosis is challenging to make accurately and quickly, relying on a combination of physical exam, history and radiologic evalua...

Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database.

Surgical endoscopy
BACKGROUND: Postoperative gastrointestinal leak and venous thromboembolism (VTE) are devastating complications of bariatric surgery. The performance of currently available predictive models for these complications remains wanting, while machine learn...

Machine learning can identify newly diagnosed patients with CLL at high risk of infection.

Nature communications
Infections have become the major cause of morbidity and mortality among patients with chronic lymphocytic leukemia (CLL) due to immune dysfunction and cytotoxic CLL treatment. Yet, predictive models for infection are missing. In this work, we develop...

Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model.

Diabetes/metabolism research and reviews
AIMS: Identification, a priori, of those at high risk of progression from pre-diabetes to diabetes may enable targeted delivery of interventional programmes while avoiding the burden of prevention and treatment in those at low risk. We studied whethe...

Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG.

Scientific reports
Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patien...

Evaluation of the predictive ability of ultrasound-based assessment of breast cancer using BI-RADS natural language reporting against commercial transcriptome-based tests.

PloS one
PURPOSE: The objective of this study was to assess the classification capability of Breast Imaging Reporting and Data System (BI-RADS) ultrasound feature descriptors targeting established commercial transcriptomic gene signatures that guide managemen...

Assessing stroke severity using electronic health record data: a machine learning approach.

BMC medical informatics and decision making
BACKGROUND: Stroke severity is an important predictor of patient outcomes and is commonly measured with the National Institutes of Health Stroke Scale (NIHSS) scores. Because these scores are often recorded as free text in physician reports, structur...