AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Colorectal Neoplasms

Showing 41 to 50 of 625 articles

Clear Filters

Interpretable multi-stage attention network to predict cancer subtype, microsatellite instability, TP53 mutation and TMB of endometrial and colorectal cancer.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Mismatch repair deficiency (dMMR), also known as high-grade microsatellite instability (MSI-H), is a well-established biomarker for predicting the immunotherapy response in endometrial cancer (EC) and colorectal cancer (CRC). Tumor mutational burden ...

A novel machine learning-based cancer-specific cardiovascular disease risk score among patients with breast, colorectal, or lung cancer.

JNCI cancer spectrum
BACKGROUND: Cancer patients have up to a 3-fold higher risk for cardiovascular disease (CVD) than the general population. Traditional CVD risk scores may be less accurate for them. We aimed to develop cancer-specific CVD risk scores and compare them ...

A Machine Learning Approach Using Topic Modeling to Identify and Assess Experiences of Patients With Colorectal Cancer: Explorative Study.

JMIR cancer
BACKGROUND: The rising number of cancer survivors and the shortage of health care professionals challenge the accessibility of cancer care. Health technologies are necessary for sustaining optimal patient journeys. To understand individuals' daily li...

High throughput analysis of rare nanoparticles with deep-enhanced sensitivity via unsupervised denoising.

Nature communications
The large-scale multiparametric analysis of individual nanoparticles is increasingly vital in the diverse fields of biology, medicine, and materials science. However, the current methods struggle with the tradeoff between measurement scalability and ...

Towards full integration of explainable artificial intelligence in colon capsule endoscopy's pathway.

Scientific reports
Despite recent surge of interest in deploying colon capsule endoscopy (CCE) for early diagnosis of colorectal diseases, there remains a large gap between the current state of CCE in clinical practice, and the state of its counterpart optical colonosc...

Integration of 101 machine learning algorithm combinations to unveil m6A/m1A/m5C/m7G-associated prognostic signature in colorectal cancer.

Scientific reports
Colorectal cancer (CRC) is the most common malignancy in the digestive system, with a lower 5-year overall survival rate. There is increasing evidence showing that RNA modification regulators such as m1A, m5C, m6A, and m7G play crucial roles in tumor...

Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study.

AJR. American journal of roentgenology
Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. The purpose of this study was to develop an artificial intelligence (AI) model to detect CRC on ro...

A Hybrid Machine Learning CT-Based Radiomics Nomogram for Predicting Cancer-Specific Survival in Curatively Resected Colorectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography-based radiomics nomogram for cancer-specific survival (CSS) prediction in curatively resected colorectal cancer (CRC), and its performance was compared with the American Joint Co...

Advances in colorectal cancer diagnosis using optimal deep feature fusion approach on biomedical images.

Scientific reports
Colorectal cancer (CRC) is the second popular cancer in females and third in males, with an increased number of cases. Pathology diagnoses complemented with predictive and prognostic biomarker information is the first step for personalized treatment....