AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Comorbidity

Showing 21 to 30 of 221 articles

Clear Filters

Prediction of pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II based on clinical risk.

PloS one
OBJECTIVE: To assess the effectiveness of different machine learning models in estimating the pharmaceutical and non-pharmaceutical expenditures associated with Diabetes Mellitus type II diagnosis, based on the clinical risk index determined by the a...

Natural language processing augments comorbidity documentation in neurosurgical inpatient admissions.

PloS one
OBJECTIVE: To establish whether or not a natural language processing technique could identify two common inpatient neurosurgical comorbidities using only text reports of inpatient head imaging.

Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave using machine learning.

PloS one
The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive ...

Prospective prediction of anxiety onset in the Canadian longitudinal study on aging (CLSA): A machine learning study.

Journal of affective disorders
BACKGROUND: Anxiety disorders are among the most common mental health disorders in the middle aged and older population. Because older individuals are more likely to have multiple comorbidities or increased frailty, the impact of anxiety disorders on...

Development and validation of a machine learning model for prediction of comorbid major depression disorder among narcolepsy type 1.

Sleep medicine
BACKGROUND: Major depression disorder (MDD) forms a common psychiatric comorbidity among patients with narcolepsy type 1 (NT1), yet its impact on patients with NT1 is often overlooked by neurologists. Currently, there is a lack of effective methods f...

Natural language processing to identify and characterize spondyloarthritis in clinical practice.

RMD open
OBJECTIVE: This study aims to use a novel technology based on natural language processing (NLP) to extract clinical information from electronic health records (EHRs) to characterise the clinical profile of patients diagnosed with spondyloarthritis (S...

Machine learning to understand risks for severe COVID-19 outcomes: a retrospective cohort study of immune-mediated inflammatory diseases, immunomodulatory medications, and comorbidities in a large US health-care system.

The Lancet. Digital health
BACKGROUND: In the context of immune-mediated inflammatory diseases (IMIDs), COVID-19 outcomes are incompletely understood and vary considerably depending on the patient population studied. We aimed to analyse severe COVID-19 outcomes and to investig...

Integrating multi-task and cost-sensitive learning for predicting mortality risk of chronic diseases in the elderly using real-world data.

International journal of medical informatics
BACKGROUND AND OBJECTIVE: Real-world data encompass population diversity, enabling insights into chronic disease mortality risk among the elderly. Deep learning excels on large datasets, offering promise for real-world data. However, current models f...