AIMC Topic: Coronary Artery Disease

Clear Filters Showing 111 to 120 of 525 articles

Machine learning-based model development for predicting risk factors of prolonged intra-aortic balloon pump therapy in patients with coronary artery bypass grafting.

Journal of cardiothoracic surgery
Machine learning algorithms are frequently used to clinical risk prediction. Our study was designed to predict risk factors of prolonged intra-aortic balloon pump (IABP) use in patients with coronary artery bypass grafting (CABG) through developing m...

Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.

Cardiovascular diabetology
BACKGROUND: Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as...

A deep learning-based automated diagnosis system for SPECT myocardial perfusion imaging.

Scientific reports
Images obtained from single-photon emission computed tomography for myocardial perfusion imaging (MPI SPECT) contain noises and artifacts, making cardiovascular disease diagnosis difficult. We developed a deep learning-based diagnosis support system ...

Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning.

Nature communications
Functionally relevant coronary artery disease (fCAD) can result in premature death or nonfatal acute myocardial infarction. Its early detection is a fundamentally important task in medicine. Classical detection approaches suffer from limited diagnost...

Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease.

Nature genetics
Coronary artery disease (CAD) exists on a spectrum of disease represented by a combination of risk factors and pathogenic processes. An in silico score for CAD built using machine learning and clinical data in electronic health records captures disea...

Explainable deep-learning-based ischemia detection using hybrid O-15 HO perfusion positron emission tomography and computed tomography imaging with clinical data.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
BACKGROUND: We developed an explainable deep-learning (DL)-based classifier to identify flow-limiting coronary artery disease (CAD) by O-15 HO perfusion positron emission tomography computed tomography (PET/CT) and coronary CT angiography (CTA) imagi...

Coronary Artery Calcification on Low-Dose Lung Cancer Screening CT in South Korea: Visual and Artificial Intelligence-Based Assessment and Association With Cardiovascular Events.

AJR. American journal of roentgenology
Coronary artery calcification (CAC) on lung cancer screening low-dose chest CT (LDCT) is a cardiovascular risk marker. South Korea was the first Asian country to initiate a national LDCT lung cancer screening program, although CAC-related outcomes a...

Machine learning models for assessing risk factors affecting health care costs: 12-month exercise-based cardiac rehabilitation.

Frontiers in public health
INTRODUCTION: Exercise-based cardiac rehabilitation (ECR) has proven to be effective and cost-effective dominant treatment option in health care. However, the contribution of well-known risk factors for prognosis of coronary artery disease (CAD) to p...

Development and Validation of Artificial Intelligence-Based Algorithms for Predicting the Segments Debulked by Rotational Atherectomy Using Intravascular Ultrasound Images.

The American journal of cardiology
We develop and evaluate an artificial intelligence (AI)-based algorithm that uses pre-rotation atherectomy (RA) intravascular ultrasound (IVUS) images to automatically predict regions debulked by RA. A total of 2106 IVUS cross-sections from 60 patien...