AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Data Accuracy

Showing 71 to 80 of 177 articles

Clear Filters

NMCMDA: neural multicategory MiRNA-disease association prediction.

Briefings in bioinformatics
MOTIVATION: There is growing evidence showing that the dysregulations of miRNAs cause diseases through various kinds of the underlying mechanism. Thus, predicting the multiple-category associations between microRNAs (miRNAs) and diseases plays an imp...

A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.

Briefings in bioinformatics
Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet...

Accurate prediction of multi-label protein subcellular localization through multi-view feature learning with RBRL classifier.

Briefings in bioinformatics
Multi-label proteins can participate in carrier transportation, enzyme catalysis, hormone regulation and other life activities. Meanwhile, they play a key role in the fields of biopharmaceuticals, gene and cell therapy. This article proposes a predic...

A primer on applying AI synergistically with domain expertise to oncology.

Biochimica et biophysica acta. Reviews on cancer
BACKGROUND: The concurrent growth of large-scale oncology data alongside the computational methods with which to analyze and model it has created a promising environment for revolutionizing cancer diagnosis, treatment, prevention, and drug discovery....

The human-in-the-loop: an evaluation of pathologists' interaction with artificial intelligence in clinical practice.

Histopathology
AIMS: One of the major drivers of the adoption of digital pathology in clinical practice is the possibility of introducing digital image analysis (DIA) to assist with diagnostic tasks. This offers potential increases in accuracy, reproducibility, and...

Machine learning to predict distal caries in mandibular second molars associated with impacted third molars.

Scientific reports
Impacted mandibular third molars (M3M) are associated with the occurrence of distal caries on the adjacent mandibular second molars (DCM2M). In this study, we aimed to develop and validate five machine learning (ML) models designed to predict the occ...

Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets.

International journal of molecular sciences
Drug-induced liver toxicity is one of the significant safety challenges for the patient's health and the pharmaceutical industry. It causes termination of drug candidates in clinical trials and also the retractions of approved drugs from the market. ...

The impact of site-specific digital histology signatures on deep learning model accuracy and bias.

Nature communications
The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and dri...

Discrepancies in Stroke Distribution and Dataset Origin in Machine Learning for Stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Machine learning algorithms depend on accurate and representative datasets for training in order to become valuable clinical tools that are widely generalizable to a varied population. We aim to conduct a review of machine learning uses i...