AIMC Topic: Deep Learning

Clear Filters Showing 491 to 500 of 26344 articles

Towards real-time conformal palliative treatment of spine metastases: A deep learning approach for Hounsfield Unit recovery of cone beam CT images.

Medical physics
BACKGROUND: The extension of onboard cone-beam CT (CBCT) imaging for real-time treatment planning is constrained by limitations in image quality. Synthetic CT (sCT) generation using deep learning provides a potential solution to these limitations.

A CVAE-based generative model for generalized B inhomogeneity corrected chemical exchange saturation transfer MRI at 5 T.

NeuroImage
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful tool to image endogenous or exogenous macromolecules. CEST contrast highly depends on radiofrequency irradiation B level. Spatial inhomogeneity of...

The prediction of RNA-small molecule binding sites in RNA structures based on geometric deep learning.

International journal of biological macromolecules
Biological interactions between RNA and small-molecule ligands play a crucial role in determining the specific functions of RNA, such as catalysis and folding, and are essential for guiding drug design in the medical field. Accurately predicting the ...

Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules.

Thyroid : official journal of the American Thyroid Association
Indeterminate cytology (Bethesda III and IV) represents 15-30% of biopsied thyroid nodules and require additional diagnostic testing. Molecular testing (MT) is a commonly used diagnostic tool that evaluatesmalignancy risk through next generation seq...

Deep learning-based recognition model of football player's technical action behavior using PCA-LBP algorithm.

Scientific reports
Football is a sport that requires sportsmen to have both physical strength and physical features. It must consider the distinctions between individuals and then provide targeted training. Football players can perform better on the field with targeted...

Deconvolution of cell types and states in spatial multiomics utilizing TACIT.

Nature communications
Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in...

Fine extraction of multi-crop planting area based on deep learning with Sentinel- 2 time-series data.

Environmental science and pollution research international
Accurate and timely access to the spatial distribution of crops is crucial for sustainable agricultural development and food security. However, extracting multi-crop areas based on high-resolution time-series data and deep learning still faces challe...

One for multiple: Physics-informed synthetic data boosts generalizable deep learning for fast MRI reconstruction.

Medical image analysis
Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibili...

A Deep Learning Survival Model for Evaluating the Survival Prognosis of Papillary Thyroid Cancer: A Population-Based Cohort Study.

Annals of surgical oncology
BACKGROUND: Deep learning can assess the individual survival prognosis in sizeable datasets with intricate underlying processes. However, studies exploring the performance of deep learning survival in papillary thyroid cancer (PTC) are lacking. This ...

Deep-learning-enabled spatial frequency domain imaging of the spatiotemporal dynamics of skin physiology.

Journal of biomedical optics
SIGNIFICANCE: Spatial frequency domain imaging (SFDI) is an emerging optical imaging modality for visualizing tissue absorption and scattering properties. This approach is promising for noninvasive wide field-of-view (FOV) monitoring of biophysiologi...