AIMC Topic: Deep Learning

Clear Filters Showing 591 to 600 of 26345 articles

Decoding Recurrence in Early-Stage and Locoregionally Advanced Non-Small Cell Lung Cancer: Insights From Electronic Health Records and Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Recurrences after curative resection in early-stage and locoregionally advanced non-small cell lung cancer (NSCLC) are common, necessitating a nuanced understanding of associated risk factors. This study aimed to establish a natural language...

Tailored self-supervised pretraining improves brain MRI diagnostic models.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Self-supervised learning has shown potential in enhancing deep learning methods, yet its application in brain magnetic resonance imaging (MRI) analysis remains underexplored. This study seeks to leverage large-scale, unlabeled public brain MRI datase...

Single-Molecule SERS Discrimination of Proline from Hydroxyproline Assisted by a Deep Learning Model.

Nano letters
Discriminating low-abundance hydroxylation is a crucial and unmet need for early disease diagnostics and therapeutic development due to the small hydroxyl group with 17.01 Da. While single-molecule surface-enhanced Raman spectroscopy (SERS) sensors c...

Circular RNA discovery with emerging sequencing and deep learning technologies.

Nature genetics
Circular RNA (circRNA) represents a type of RNA molecule characterized by a closed-loop structure that is distinct from linear RNA counterparts. Recent studies have revealed the emerging role of these circular transcripts in gene regulation and disea...

Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling.

Sensors (Basel, Switzerland)
Chlorophyll content in date leaves is critical for fruit quality and yield. Traditional detection methods are usually complex and expensive. This study proposes a rapid detection method for chlorophyll content using smartphone images and machine lear...

An Approach for Detecting Mangrove Areas and Mapping Species Using Multispectral Drone Imagery and Deep Learning.

Sensors (Basel, Switzerland)
Mangrove ecosystems are important in tropical and subtropical coastal zones, contributing to marine biodiversity and maintaining marine ecological balance. It is crucial to develop more efficient, intelligent, and accurate monitoring methods for mang...

Development of a Deep-Learning-Based Computerized Scoring Algorithm.

Sensors (Basel, Switzerland)
During polygraph tests, the examiner evaluates physiological responses recorded on a chart to identify deception. Generally, this evaluation involves a numerical scoring system. However, biases related to politics, region, and religion, as well as pe...

Deep Learning-Driven Abbreviated Shoulder MRI Protocols: Diagnostic Accuracy in Clinical Practice.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Deep learning (DL) reconstruction techniques have shown promise in reducing MRI acquisition times while maintaining image quality. However, the impact of different acceleration factors on diagnostic accuracy in shoulder MRI remains unexpl...

Deep-learning network for automated evaluation of root-canal filling radiographic quality.

European journal of medical research
BACKGROUND: Deep-learning networks are promising techniques in dentistry. This study developed and validated a deep-learning network, You Only Look Once (YOLO) v5, for the automatic evaluation of root-canal filling quality on periapical radiographs.

Feasibility of U-Net model for cerebral arteries segmentation with low-dose computed tomography angiographic images with pre-processing methods.

Scientific reports
Subtraction computed tomography angiography (sCTA) can effectively separate enhanced cerebral arteries from similar signal intensity and proximity (i.e., vertebrae and skull). However, sCTA is not considered mainstream because of the high radiation d...