AIMC Topic: Drug Evaluation, Preclinical

Clear Filters Showing 91 to 100 of 192 articles

Applications of machine-learning methods for the discovery of NDM-1 inhibitors.

Chemical biology & drug design
The emergence of New Delhi metal beta-lactamase (NDM-1)-producing bacteria and their worldwide spread pose great challenges for the treatment of drug-resistant bacterial infections. These bacteria can hydrolyze most β-lactam antibacterials. Unfortuna...

Automated detection of the head-twitch response using wavelet scalograms and a deep convolutional neural network.

Scientific reports
Hallucinogens induce the head-twitch response (HTR), a rapid reciprocal head movement, in mice. Although head twitches are usually identified by direct observation, they can also be assessed using a head-mounted magnet and a magnetometer. Procedures ...

Robotically handled whole-tissue culture system for the screening of oral drug formulations.

Nature biomedical engineering
Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically hand...

Machine-learning-based quality control of contractility of cultured human-induced pluripotent stem-cell-derived cardiomyocytes.

Biochemical and biophysical research communications
The precise and early assessment of cardiotoxicity is fundamental to bring forward novel drug candidates to the pharmaceutical market and to avoid their withdrawal from the market. Recent preclinical studies have attempted to use human-induced plurip...

Broad-Spectrum Profiling of Drug Safety via Learning Complex Network.

Clinical pharmacology and therapeutics
Drug safety is a severe clinical pharmacology and toxicology problem that has caused immense medical and social burdens every year. Regretfully, a reproducible method to assess drug safety systematically and quantitatively is still missing. In this s...

Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.

International journal of molecular sciences
Glucose-6-Phosphate Dehydrogenase (G6PD) is a ubiquitous cytoplasmic enzyme converting glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway (PPP). The G6PD deficiency renders the inability to regenerate glutathione due to lack...

Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.

Journal of computer-aided molecular design
Machine learning methods may have the potential to significantly accelerate drug discovery. However, the increasing rate of new methodological approaches being published in the literature raises the fundamental question of how models should be benchm...