This study aimed to examine whether the diagnostic accuracy of four noninvasive tests (NITs) for detecting advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is maintained or is inferior to with or without the presence of type 2 diabetes. ...
Identification of medical conditions using claims data is generally conducted with algorithms based on subject-matter knowledge. However, these claims-based algorithms (CBAs) are highly dependent on the knowledge level and not necessarily optimized f...
International journal of environmental research and public health
34073854
Few studies have been conducted to classify and predict the influence of nutritional intake on overweight/obesity, dyslipidemia, hypertension and type 2 diabetes mellitus (T2DM) based on deep learning such as deep neural network (DNN). The present st...
BACKGROUND: Low-density lipoprotein-cholesterol (LDL-C) is used as a threshold and target for treating dyslipidemia. Although the Friedewald equation is widely used to estimate LDL-C, it has been known to be inaccurate in the case of high triglycerid...
AIMS: To identify peri- and post-menopausal women at risk of non-communicable diseases in rural India and to assess their prevalence amongst these groups via the use of artificial intelligence.
Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions,...
BACKGROUND: Non-communicable diseases (NCDs) are a major public health challenge globally, including in Saudi Arabia. However, measuring the true extent of NCD prevalence has been hampered by a paucity of nationally representative epidemiological stu...
This study addresses a gap in research on predictive models for postpartum dyslipidemia in women with gestational diabetes mellitus (GDM). The goal was to develop a machine learning-based model to predict postpartum dyslipidemia using early pregnancy...