AIMC Topic: Functional Neuroimaging

Clear Filters Showing 11 to 20 of 70 articles

Unsupervised learning of brain state dynamics during emotion imagination using high-density EEG.

NeuroImage
This study applies adaptive mixture independent component analysis (AMICA) to learn a set of ICA models, each optimized by fitting a distributional model for each identified component process while maximizing component process independence within som...

Diagnosis of Schizophrenia Based on Deep Learning Using fMRI.

Computational and mathematical methods in medicine
Schizophrenia is a brain disease that frequently occurs in young people. Early diagnosis and treatment can reduce family burdens and reduce social costs. There is no objective evaluation index for schizophrenia. In order to improve the classification...

Unveiling functions of the visual cortex using task-specific deep neural networks.

PLoS computational biology
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We r...

Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics.

Human brain mapping
Large-scale brain dynamics are believed to lie in a latent, low-dimensional space. Typically, the embeddings of brain scans are derived independently from different cognitive tasks or resting-state data, ignoring a potentially large-and shared-portio...

Behavioral correlates of cortical semantic representations modeled by word vectors.

PLoS computational biology
The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field o...

Evaluating atypical language in autism using automated language measures.

Scientific reports
Measurement of language atypicalities in Autism Spectrum Disorder (ASD) is cumbersome and costly. Better language outcome measures are needed. Using language transcripts, we generated Automated Language Measures (ALMs) and tested their validity. 169 ...

Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis.

NeuroImage
Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of ...

Intranasal vasopressin modulates resting state brain activity across multiple neural systems: Evidence from a brain imaging machine learning study.

Neuropharmacology
Arginine vasopressin (AVP), a neuropeptide with widespread receptors in brain regions important for socioemotional processing, is critical in regulating various mammalian social behavior and emotion. Although a growing body of task-based brain imagin...

Predicting Parkinson's disease trajectory using clinical and neuroimaging baseline measures.

Parkinsonism & related disorders
INTRODUCTION: Predictive biomarkers of Parkinson's Disease progression are needed to expedite neuroprotective treatment development and facilitate prognoses for patients. This work uses measures derived from resting-state functional magnetic resonanc...