AIMC Topic: Genetic Variation

Clear Filters Showing 61 to 70 of 125 articles

Estimation of allele-specific fitness effects across human protein-coding sequences and implications for disease.

Genome research
A central challenge in human genomics is to understand the cellular, evolutionary, and clinical significance of genetic variants. Here, we introduce a unified population-genetic and machine-learning model, called inear llele-pecific election nferenc ...

MMSplice: modular modeling improves the predictions of genetic variant effects on splicing.

Genome biology
Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon skipping prediction challenge. The...

DeepPVP: phenotype-based prioritization of causative variants using deep learning.

BMC bioinformatics
BACKGROUND: Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity ...

Xrare: a machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis.

Genetics in medicine : official journal of the American College of Medical Genetics
PURPOSE: Despite the successful progress next-generation sequencing technologies has achieved in diagnosing the genetic cause of rare Mendelian diseases, the current diagnostic rate is still far from satisfactory because of heterogeneity, imprecision...

Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction.

Scientific reports
Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudina...

Embracing Environmental Genomics and Machine Learning for Routine Biomonitoring.

Trends in microbiology
Genomics is fast becoming a routine tool in medical diagnostics and cutting-edge biotechnologies. Yet, its use for environmental biomonitoring is still considered a futuristic ideal. Until now, environmental genomics was mainly used as a replacement ...

Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data.

Risk analysis : an official publication of the Society for Risk Analysis
Next-generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and vi...

Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
The determination of lineages from strain-based molecular genotyping information is an important problem in tuberculosis. Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing is a commonly used molecular genotyp...

Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.

PLoS genetics
Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is cru...