AIMC Topic: Genome, Viral

Clear Filters Showing 31 to 40 of 57 articles

A Novel Protein Mapping Method for Predicting the Protein Interactions in COVID-19 Disease by Deep Learning.

Interdisciplinary sciences, computational life sciences
The new type of corona virus (SARS-COV-2) emerging in Wuhan, China has spread rapidly to the world and has become a pandemic. In addition to having a significant impact on daily life, it also shows its effect in different areas, including public heal...

Sequence-to-function deep learning frameworks for engineered riboregulators.

Nature communications
While synthetic biology has revolutionized our approaches to medicine, agriculture, and energy, the design of completely novel biological circuit components beyond naturally-derived templates remains challenging due to poorly understood design rules....

A deep learning approach to programmable RNA switches.

Nature communications
Engineered RNA elements are programmable tools capable of detecting small molecules, proteins, and nucleic acids. Predicting the behavior of these synthetic biology components remains a challenge, a situation that could be addressed through enhanced ...

Viral pandemic preparedness: A pluripotent stem cell-based machine-learning platform for simulating SARS-CoV-2 infection to enable drug discovery and repurposing.

Stem cells translational medicine
Infection with the SARS-CoV-2 virus has rapidly become a global pandemic for which we were not prepared. Several clinical trials using previously approved drugs and drug combinations are urgently under way to improve the current situation. A vaccine ...

Predicting host taxonomic information from viral genomes: A comparison of feature representations.

PLoS computational biology
The rise in metagenomics has led to an exponential growth in virus discovery. However, the majority of these new virus sequences have no assigned host. Current machine learning approaches to predicting virus host interactions have a tendency to focus...

Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study.

PloS one
The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such major viral outbreaks demand early elucidation of taxonomic classification and or...

Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts.

Scientific reports
Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progres...

A Deep Learning Approach for Detecting Copy Number Variation in Next-Generation Sequencing Data.

G3 (Bethesda, Md.)
Copy number variants (CNV) are associated with phenotypic variation in several species. However, properly detecting changes in copy numbers of sequences remains a difficult problem, especially in lower quality or lower coverage next-generation sequen...

ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels.

BMC genomics
BACKGROUND: Although software tools abound for the comparison, analysis, identification, and classification of genomic sequences, taxonomic classification remains challenging due to the magnitude of the datasets and the intrinsic problems associated ...

An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes.

PloS one
For many disease-causing virus species, global diversity is clustered into a taxonomy of subtypes with clinical significance. In particular, the classification of infections among the subtypes of human immunodeficiency virus type 1 (HIV-1) is a routi...