AIMC Topic: Genome-Wide Association Study

Clear Filters Showing 21 to 30 of 294 articles

Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy.

Scientific reports
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are con...

Integrating Deep Learning Models with Genome-Wide Association Study-Based Identification Enhanced Phenotype Predictions in Group A .

Journal of microbiology and biotechnology
Group A (GAS) is a major pathogen with diverse clinical outcomes linked to its genetic variability, making accurate phenotype prediction essential. While previous studies have identified many GAS-associated genetic factors, translating these finding...

aurora: a machine learning gwas tool for analyzing microbial habitat adaptation.

Genome biology
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to in...

Analysis of shared pathogenic mechanisms and drug targets in myocardial infarction and gastric cancer based on transcriptomics and machine learning.

Frontiers in immunology
BACKGROUND: Recent studies have suggested a potential association between gastric cancer (GC) and myocardial infarction (MI), with shared pathogenic factors. This study aimed to identify these common factors and potential pharmacologic targets.

Exploring the application of deep learning methods for polygenic risk score estimation.

Biomedical physics & engineering express
. Polygenic risk scores (PRS) summarise genetic information into a single number with clinical and research uses. Deep learning (DL) has revolutionised multiple fields, however, the impact of DL on PRSs has been less significant. We explore how DL ca...

Improving genetic variant identification for quantitative traits using ensemble learning-based approaches.

BMC genomics
BACKGROUND: Genome-wide association studies (GWAS) are rapidly advancing due to the improved resolution and completeness provided by Telomere-to-Telomere (T2T) and pangenome assemblies. While recent advancements in GWAS methods have primarily focused...

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

Genome biology
BACKGROUND: Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and ...

Leveraging Automated Machine Learning for Environmental Data-Driven Genetic Analysis and Genomic Prediction in Maize Hybrids.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Genotype, environment, and genotype-by-environment (G×E) interactions play a critical role in shaping crop phenotypes. Here, a large-scale, multi-environment hybrid maize dataset is used to construct and validate an automated machine learning framewo...

Pharmacogenomics and response to lithium in bipolar disorder.

Pharmacogenomics
AIMS: The present review explores the existing evidence on pharmacogenomic tests for prediction of lithium response in the treatment of bipolar disorder. We focused our research article on reports describing findings from genome-wide association stud...

Genetic association studies using disease liabilities from deep neural networks.

American journal of human genetics
The case-control study is a widely used method for investigating the genetic underpinnings of binary traits. However, long-term, prospective cohort studies often grapple with absent or evolving health-related outcomes. Here, we propose two methods, l...