AIMC Topic: Genome-Wide Association Study

Clear Filters Showing 31 to 40 of 294 articles

Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder.

Translational psychiatry
Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employe...

Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic archit...

Modeling gene interactions in polygenic prediction via geometric deep learning.

Genome research
Polygenic risk score (PRS) is a widely used approach for predicting individuals' genetic risk of complex diseases, playing a pivotal role in advancing precision medicine. Traditional PRS methods, predominantly following a linear structure, often fall...

Machine learning-driven identification of critical gene programs and key transcription factors in migraine.

The journal of headache and pain
BACKGROUND: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associ...

Deep self-representation learning with hyper-laplacian regularization for brain imaging genetics association analysis.

Methods (San Diego, Calif.)
Brain imaging genetics aims to explore the association between genetic factors such as single nucleotide polymorphisms (SNPs) and brain imaging quantitative traits (QTs). However, most existing methods do not consider the nonlinear correlations betwe...

Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe.

Plant, cell & environment
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among gen...

Genome-wide association study on color-image-based convolutional neural networks.

PeerJ
BACKGROUND: Convolutional neural networks have excellent modeling abilities to complex large-scale datasets and have been applied to genomics. It requires converting genotype data to image format when employing convolutional neural networks to genome...

Genomic determinants of biological age estimated by deep learning applied to retinal images.

GeroScience
With the development of deep learning (DL) techniques, there has been a successful application of this approach to determine biological age from latent information contained in retinal images. Retinal age gap (RAG) defined as the difference between c...

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nature communications
Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been ...

Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Nature communications
Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, w...