Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhance...
BACKGROUND: Cushing's Disease (CD) is a rare clinical syndrome characterized by excessive secretion of adrenocorticotrophic hormone, leading to significant functional and structural brain alterations as observed in Magnetic Resonance Imaging (MRI). W...
RATIONALE AND OBJECTIVES: To investigate whether clinical and gray matter (GM) atrophy indicators can predict disability in relapsing-remitting multiple sclerosis (RRMS) and to enhance the interpretability and intuitiveness of a predictive machine le...
Acta radiologica (Stockholm, Sweden : 1987)
Jan 9, 2024
BACKGROUND: To evaluate the degree of cerebral atrophy for Alzheimer's disease (AD), voxel-based morphometry has been performed with magnetic resonance imaging. Detailed morphological changes in a specific tissue area having the most evidence of atro...
Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it en...
Parkinson's disease (PD) diagnosis based on magnetic resonance imaging (MRI) is still challenging clinically. Quantitative susceptibility maps (QSM) can potentially provide underlying pathophysiological information by detecting the iron distribution ...
A robust cascaded deep learning framework with integrated hippocampal gray matter (HGM) probability map was developed to improve the hippocampus segmentation (called HGM-cNet) due to its significance in various neuropsychiatric disorders such as Alzh...
Accurate measurement of brain structures is essential for the evaluation of neonatal brain growth and development. The conventional methods use manual segmentation to measure brain tissues, which is very time-consuming and inefficient. Recent deep le...
PURPOSE: To improve accuracy and speed of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction fraction (OEF) mapping using a deep neural network (QQ-NET).
Automatic methods for feature extraction, volumetry, and morphometric analysis in clinical neuroscience typically operate on images obtained with magnetic resonance (MR) imaging equipment. Although CT scans are less expensive to acquire and more wide...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.