AIMC Topic: HeLa Cells

Clear Filters Showing 11 to 20 of 100 articles

Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.

RNA biology
2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping a...

Predicting Transcription Factor Binding Sites with Deep Learning.

International journal of molecular sciences
Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with diff...

Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network.

Talanta
Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and hig...

Automated segmentation of cell organelles in volume electron microscopy using deep learning.

Microscopy research and technique
Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of pro...

Mass spectrometry-based proteomics data from thousands of HeLa control samples.

Scientific data
Here we provide a curated, large scale, label free mass spectrometry-based proteomics data set derived from HeLa cell lines for general purpose machine learning and analysis. Data access and filtering is a tedious task, which takes up considerable am...

Quantification of golgi dispersal and classification using machine learning models.

Micron (Oxford, England : 1993)
The Golgi body is a critical organelle in eukaryotic cells responsible for processing and modifying proteins and lipids. Under certain conditions, such as stress, disease, or ageing, the Golgi structure alters. Therefore, understanding the mechanisms...

Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms.

Lab on a chip
Fluorescence imaging flow cytometry (IFC) has been demonstrated as a crucial biomedical technique for analyzing specific cell subpopulations from heterogeneous cellular populations. However, the high-speed flow of fluorescent cells leads to motion bl...

.

Analytical chemistry
Four-dimensional (4D) data-independent acquisition (DIA)-based proteomics is a promising technology. However, its full performance is restricted by the time-consuming building and limited coverage of a project-specific experimental library. Herein, w...

Moving perfusion culture and live-cell imaging from lab to disc: proof of concept toxicity assay with AI-based image analysis.

Lab on a chip
, cell-based assays are essential in diagnostics and drug development. There are ongoing efforts to establish new technologies that enable real-time detection of cell-drug interaction during culture under flow conditions. Our compact (10 × 10 × 8.5 c...