AIMC Topic: Hypoglycemic Agents

Clear Filters Showing 31 to 40 of 133 articles

An automatic deep reinforcement learning bolus calculator for automated insulin delivery systems.

Scientific reports
In hybrid automatic insulin delivery (HAID) systems, meal disturbance is compensated by feedforward control, which requires the announcement of the meal by the patient with type 1 diabetes (DM1) to achieve the desired glycemic control performance. Th...

Assessing the Utility, Impact, and Adoption Challenges of an Artificial Intelligence-Enabled Prescription Advisory Tool for Type 2 Diabetes Management: Qualitative Study.

JMIR human factors
BACKGROUND: The clinical management of type 2 diabetes mellitus (T2DM) presents a significant challenge due to the constantly evolving clinical practice guidelines and growing array of drug classes available. Evidence suggests that artificial intelli...

Identifying subtypes of type 2 diabetes mellitus with machine learning: development, internal validation, prognostic validation and medication burden in linked electronic health records in 420 448 individuals.

BMJ open diabetes research & care
INTRODUCTION: None of the studies of type 2 diabetes (T2D) subtyping to date have used linked population-level data for incident and prevalent T2D, incorporating a diverse set of variables, explainable methods for cluster characterization, or adhered...

Integrated biomarker profiling for predicting the response of type 2 diabetes to metformin.

Diabetes, obesity & metabolism
AIM: To explore biomarkers that can predict the response of type 2 diabetes (T2D) patients to metformin at an early stage to provide better treatment for T2D.

A Scalable Application of Artificial Intelligence-Driven Insulin Titration Program to Transform Type 2 Diabetes Management.

Diabetes technology & therapeutics
Despite new pharmacotherapy, most patients with long-term type 2 diabetes are still hyperglycemic. This could have been solved by insulin with its unlimited potential efficacy, but its dynamic physiology demands frequent titrations which are overdem...

Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring.

Diabetes technology & therapeutics
The aim of this study was to develop and validate a prediction model based on continuous glucose monitoring (CGM) data to identify a week-to-week risk profile of excessive hypoglycemia. We analyzed, trained, and internally tested two prediction mod...

Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats.

Frontiers in endocrinology
INTRODUCTION: With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have s...

Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency.

Nature chemistry
Several peptide dual agonists of the human glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R) are in development for the treatment of type 2 diabetes, obesity and their associated complications. Candidates must have high poten...

Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review.

Artificial intelligence in medicine
Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper con...

Deep2Pep: A deep learning method in multi-label classification of bioactive peptide.

Computational biology and chemistry
Functional peptides are easy to absorb and have low side effects, which has attracted increasing interest from pharmaceutical scientists. However, due to the limitations in the laboratory funding and human resources, it is difficult to screen the fun...